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to point in a new direction: that of the net magnetic field.  We 
stress, of course, that the compass must be parallel with the 
ground so that it only responds to the horizontal components 
of nearby fields. 

According to the superposition principle, the net magnetic 
field is simply the vector sum of all contributing fields: 

Bnet = BEarth + Badditional = BEarth + Bmagnet + Bwire + ... (1)

If the situation is such that, at a particular region, this addi-
tional magnetic field is perpendicular to the horizontal com-
ponent of Earth’s magnetic field (Fig. 1), then the ratio of their 
respective strengths follows the simple trigonometric relation:

						         (2).θa  
				  

The angle q is the deflection angle of the compass needle 
from the magnetic north. If both the deflection angle and the 
horizontal component of the Earth’s magnetic field strength 
BEarth are known, then the field strength of the additional 
field in the vicinity of the compass can be easily calculated. 
Table I shows the magnetic field strength of the Earth in a 
few U.S. cities. These data, along with those for other cities, 
can easily be found online.3

The magnetic field of a long, straight wire
For this first activity, our students used a compass to mea-

sure the magnetic field strength of a current-carrying wire.  
All that is needed for this experiment are two D-cell batteries, 
a small (~0.75 W) light bulb and holder, a ruler, a compass 
with degree markings, and a few lengths of wire, at least one 
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A  compass is an excellent classroom tool for the explo-
ration of magnetic fields. Any student can tell you 
that a compass is used to determine which direction 

is north, but when paired with some basic trigonometry, the 
compass can be used to actually measure the strength of the 
magnetic field due to a nearby magnet or current-carrying 
wire.  In this paper, we present a series of simple activities 
adapted from the Matter & Interactions textbook1 for doing 
just this. Interestingly, these simple measurements are compa-
rable to predictions made by the Bohr model of the atom. Al-
though antiquated, Bohr’s atom can lead the way to a deeper 
analysis of the atomic properties of magnets. Although origi-
nally developed for an introductory calculus-based course, 
these activities can easily be adapted for use in an algebra-
based class or even at the high school level. 

We performed these activities with our students in a 
SCALE-UP (Student Centered Active Learning Environment 
for Undergraduate Programs) studio at NCSU.2  The most 
prominent aspects of this environment are the classroom lay-
out, featuring round tables to enable face-to-face interactions, 
and the use of frequent, hands-on activities, such as the ones 
presented here. 

The technique
 A compass works by allowing a small magnetized needle 

to line up with the horizontal component of the net magnetic 
field in its vicinity.  In most open places only the Earth’s mag-
netic field is strong enough to significantly affect the compass 
needle. However, in the presence of another magnetic field 
of comparable strength (say, due to a magnet or a current-
carrying wire), the compass needle will “deflect” from north 

Fig. 1. The compass needle deflects by an angle q to point in the 
direction of the net horizontal magnetic field. 

Table I. The magnetic field strength (component parallel to the 
ground) of the Earth at various U.S. locations.3

City Horizontal field strength 
(tesla)

Anchorage, AK 1.53 e-5

Los Angeles, CA 2.47 e-5

Washington, DC 2.07 e-5

Miami, FL 2.53 e-5

Honolulu, HI 2.77 e-5

Raleigh, NC 2.2 e-5

New York, NY 2.03 e-5
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deflect by an angle q (Fig. 3). Using the data shown in Fig. 3 
and the Table I information for Raleigh:

Bwire  =  BEarth . tan (q)
              =  (2.2 310-5 T) tan (20o) =  8.0310-6 T.             (3)

This value can be compared to that found using the Biot-
Savart law for a long straight wire:
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where I is the conventional current in the wire, measured to 
be 0.314 A, and r is the distance from the center of the wire 
to the center of the compass needle, estimated to be 0.007 m: 
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This turns out to be in good agreement with our measured 
value of the wire’s magnetic field, especially considering that 
the precision to which our compass deflection can be mea-
sured is about 2o and the precision of the distance estimate 
is, at best,  0.5 mm.

The magnetic field of a magnet
For the second activity, our students used this same tech-

nique to measure the magnetic field strength of a bar magnet 
along its axis. All that is needed is a small bar magnet and a 
compass. Once again, be sure that the compass is flush with 
the ground and is far away from other magnetic objects. Place 
the magnet on the “east-west” axis so that it is pointing toward 
the center of the compass (Fig. 4).  Like the previous activity, 
this is set up so that, near the compass, the magnetic field due 
to the magnet is perpendicular to the horizontal component 
of Earth’s magnetic field. 

The magnetic field strength of the magnet can now be cal-
culated in the vicinity of the compass: 

Bmagnet  = BEarth . tan (q)
	      =  2.2 310-5 T . tan (70o) = 6.0310-5  T.	          (6)
	  			 

Although we used a 70o deflection, this calculation is even 
simpler if the students adjust the separation between the 
compass and wire until a 45o deflection is seen. For this to 

of which should be about 30 cm long. An ammeter and a roll 
of tape may also be useful. Have the students prepare a simple 
series circuit with the light bulb and a long, straight length of 
wire, but leave one of the connections open for now. The light 
bulb should be included to reduce the current in the circuit, 
but it is also pedagogically useful for the students to observe 
that there is a correlation between the compass deflection 
and the bulb’s illumination. Place the compass flat on a table 
directly beneath, and near the middle of, the straight length of 
wire so that the wire is lined up with the north-aligned com-
pass needle (Fig. 2). Be sure that the compass is far from iron, 
steel, or other magnetic objects, especially the other parts of 
the circuit, since these will noticeably affect the needle. The 
compass and the wire may need to be taped down to reduce 
the problem of accidental bumps.

Once the circuit is closed, the magnetic field due to the 
wire will point east-west near the compass and the needle will 

Fig. 2. With no current in the wire, the compass 
points north. 

Fig. 3. When 0.314 A is run through the wire, the 
compass deflects by approximately 20o.

Fig. 4. The compass deflects by 70 degrees when this magnet is placed 
10.8 cm (center to center distance) away.



Looking deeper…
One of the benefits of the macro-micro connections em-

phasized in the Matter & Interactions text1,4 is that simple 
observations like the ones presented above can lead to deep 
analyses of physical systems. By this point, our students have 
seen that the field patterns for a bar magnet look remarkably 
like those of a single current-carrying loop of wire. They even 
have the same distance dependence. This leads to a direct 
comparison of the on-axis field equations for both situations:
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For the magnetic field equation of a loop of wire, the cur-
rent in the wire and the area of the loop are the only two 
intrinsic properties of the loop itself.  Their product, IA, is 
defined as the magnetic dipole moment, m. By analogy, the 
magnetic field of a bar magnet can be expressed as:
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Using this, the students can calculate the magnetic dipole mo-
ment of their magnets. Unfortunately, it is not at all obvious 
where the dipole moment of a magnet originates. Is there a 
current in the magnet? What should the area be? These ques-
tions allow for an interesting comparison between our mea-
surements and the predictions made by the Bohr model of the 
atom. It should be stressed that, while the Bohr model is only 
an approximation of our current understanding of the atom, it 
can nevertheless provide an introduction to deeper analyses. 

Neils Bohr made the assumption that electrons orbit the 
atomic nucleus much in the same way that planets in our solar 
system orbit the Sun. This circular orbit can be modeled as a 
loop of current. If we take the electron orbit of the Bohr atom 
to be the primary source of the magnetic moment of an atom 
(neglecting the contributions from the nuclear and electronic 
spins),
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where T is the orbital period of the electron, e is the electron 
charge, R is the orbital radius, and v is its orbital velocity. 
Compare this with the angular momentum of the electron:

|L| = |R3p| = Rmv sin q = Rmv sin (90o).		        (16)

Since the angular momentum L must be in integer multiples 
of , we now have 
						           (17) 

as an expression for the magnetic moment of one atom in 

happen, the horizontal component of the Earth’s field match-
es the magnet’s field at this distance, since tan 45o = 1.	

Distance dependence
So far, our students have only qualitatively observed that 

the magnetic field strength decreases the farther from the 
source it is measured. We encouraged our students to play 
with the compass and magnet to observe this effect; how-
ever, they do have the tools necessary to calculate what this 
distance dependence is.  Mathematically, we can express this 
dependence as 

|B| = k(d)n,					              (7)

where k is simply a proportionality constant and n is the 
power relation that will be determined. It is important for 
the students to know that the distance dependence is dif-
ferent for different configurations of currents and magnets.  
Our students found this dependence for both the iron bar 
magnet, which we will focus on in this paper, and a long, 
straight wire. 

In addition to a magnet and compass, a ruler is also needed 
for this activity. Carefully align the magnet as before (see Fig. 
4), calculate the magnetic field strength, and measure the cen-
ter-to-center distance between the compass and the magnet.  
Now double this distance; the magnetic field of the magnet at 
the new location will not be as strong. The compass deflection 
angle can again be used to calculate the field strength at this 
new location. 

To calculate the factor n, take the ratio of the magnetic field 
strengths at these two locations:
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taking the natural logarithm of both sides:
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From our sample data, we calculated n to be:
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6.0 10 T-5                                          (10)	
For a magnetic dipole, the theoretical value of n should be -3 
(n is -1 for a straight length of wire):
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where k is a proportionality constant. Again, considering 
the precision of both the ruler and the degree scale on the 
compass, this value is in good agreement with the accepted 
value. While this method is sufficient for making a simple 
comparison against the accepted value, you may want your 
students, depending on their abilities, to conduct a more 
thorough analysis by taking additional data points and con-
structing a log-log plot. 
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Final remarks
Because they were able to observe the compass deflec-

tions rather than just read numbers off of a computer screen, 
our students found these experiments especially enjoyable. 
In addition to the experiments detailed above, our students 
also measured the field strength of a coil of wire. In fact, the 
relative simplicity of these techniques allows for their use in 
calculating the magnetic field strength of a wide variety of 
magnet and wire configurations, including using a known 
magnetic field to measure the field strength of Earth.5,6  
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the ground state, for which N=1, as represented in the Bohr 
model.

As part of their investigation, our students also estimated 
the number of iron atoms n in each magnet so that they could 
compare their measurements to Bohr’s prediction. Using the 
atomic mass of iron, along with the measured mass of one of 
their magnets:
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Assuming that these atoms are all aligned, an estimate of the 
dipole moment of a single atom of iron, based on our mea-
surements, is thus:
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That this value is of the same order of magnitude as Eq. 
(17) is an excellent sign, considering the crudeness of this 
theoretical model. 

Comparison with atomic model of iron
Of course, the currently understood model of magnetism 

is far more complicated than these simple calculations would 
suggest. Be sure to stress to your students that this analysis is 
based on a number of simplifying approximations to the cur-
rent model. 

One assumption that our analysis makes is the validity of 
the Bohr atom; however, the Bohr model is still widely con-
sidered to be a good first-order approximation appropriate 
for introductory courses. A deeper assumption made by our 
analysis is that the magnetic dipole moment that we measured 
is associated solely with the orbital angular momentum of 
the electron. In fact, many subatomic particles, including the 
electron, carry intrinsic magnetic moments associated with 
their spin. Any dipole moment that might be associated with 
an individual iron atom within a magnet arises from the com-
plex spin-orbit interactions within the atom itself, as well as 
the electric interactions within large groups of atoms called 
magnetic domains. Our analysis also assumed that these do-
mains are all precisely lined up; however, this is surely not the 
case. You may want to show your students some illustrations 
of magnetic domains to further clarify this point.

 While we do not claim that this simplified analysis is cor-
rect, it does provide results that are remarkably close to those 
that were observed and it can be used as a palatable starting 
point for more advanced analyses. 
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