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Abstract

We consider alternative structures for subtractive interference cancellation (IC) detectors with

single-user Viterbi decoding for convolutionally encoded code-division multiple-access (CDMA) sys-

tems on synchronous additive white Gaussian noise (AWGN) and time-uncorrelated Rayleigh fad-

ing channels. In the first structure interference cancellation with undecoded decisions (ICUD) is

performed followed by single-user decoding of each user. In the second structure post-decoding

interference cancellation (PDIC) is applied followed by a second bank of single-user decoders. As

expected, the PDIC scheme usually outperforms the ICUD but we find some special cases where

the performance of the ICUD is better. This behavior is analyzed and conditions for the existence

of an error probability floor for ICUD receivers are derived. Furthermore, a multiuser interleaving

scheme, in which each user is assigned a distinct interleaving pattern (DIP), is proposed for the

PDIC scheme to overcome a problem caused by decoding prior to IC. The performance gain due to

DIP is significant on the AWGN channel and, for a small number of users, on the time-uncorrelated

fading channel. By analyzing the residual multiple-access interference (RMAI), we project that

the performance gain due to DIP will be significant on time-correlated channels with slow fading

even for a large number of users. The complexity of the proposed DIP scheme is analyzed and its

applicability to the asynchronous AWGN channel and multipath fading environments is discussed.

Finally, a family of approximations to the bit error rate (BER) and some exact results are derived

for the various receiver structures. In particular, a novel expression for the variance of the RMAI

in the ICUD receiver is derived and shown to improve the accuracy of the BER approximation.

CDMA systems using both deterministic and random spreading sequences are considered.
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1 Introduction

The performance of code-division multiple-access (CDMA) systems is mainly limited by multiple-

access interference (MAI) in addition to the fading encountered on the mobile radio channel where

CDMA systems are typically used. Mitigating MAI, therefore, leads to systems with higher capacity.

The simplest receiver to implement is the so-called “conventional” or matched filter receiver which,

for any given user, consists of a filter matched to the spreading (signature) sequence of that user,

followed by a threshold decision device. Because it does not utilize the knowledge of interfering users’

parameters, the performance of the conventional receiver is generally poor. On the other hand, the

maximum-likelihood multi-user detector [1] is near-optimal in terms of error probability but has

complexity that is exponential in the number of users, rendering it impractical for most applications.

This has resulted in a huge effort in search of multiuser detectors with reasonable complexity that

overcome the shortcomings of the conventional receiver. Multi-stage, or subtractive IC, detectors [2]

are a large family of detectors that offer attractive trade-offs between performance, complexity, and

demodulation delay. In this class of detectors, a first stage produces tentative decisions or estimates

for all the users’ bits which are then used in subsequent stages to subtract MAI from the signals

of each user. These detectors can be easily combined with single-user decoders to improve the

interference cancellation (IC) operation itself, which is very important since virtually all practical

systems employ some form of forward error correction.

The maximum-likelihood joint multiuser detector and decoder for asynchronous convolutionally

encoded CDMA systems [3] has complexity that is exponential in the product of the number of

users and the constraint length of the encoder. Furthermore, suboptimal implementations of the

ML joint detector and decoder, such as reduced-state sequence estimation or sequential decoding

approaches (see references in [4, p.1192-1193]), are still too complex. On the other hand, complete

partitioning of the multiuser detection and decoding functionality in the receiver is undesirable since

it does not make use of the coding on the link to improve the interference cancellation (IC) and thus

it limits performance considerably for highly loaded systems. We refer to this type of receiver as an

IC with Undecoded Decisions (ICUD) detector. One practical solution to the problem is possible

with subtractive IC detectors where single-user Viterbi decoders (VDs) may be employed prior to

the IC stage to produce better first stage decisions and thus more reliable MAI cancellation. We call

this receiver structure Post-Decoding IC (PDIC). While more complex than ICUD, this approach

utilizes the coding on the link in the IC stage(s) and avoids the complexity of joint ML-based

detectors and decoders. This approach was suggested in [5] for a code-spread CDMA system using

successive IC and was considered among other proposals in [4].

In this paper we focus on parallel-IC two-stage receivers with the conventional first stage making

hard decisions and single-user soft-decision VDs with hard outputs. We limit ourselves to only one
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stage of IC following the conventional first stage for acceptable hardware complexity and demod-

ulation delay. The proposed receiver structures, however, can be easily extended to additional IC

stages. We compare the PDIC and ICUD receivers under various conditions and identify interesting

special cases when the ICUD receiver outperforms the PDIC receiver. This prompts an examina-

tion of the residual MAI (RMAI) in both structures. Analytical results concerning the existence

of error probability floor for ICUD receivers are derived. We also find that the decoding in PDIC

schemes causes the RMAI to be correlated in such a way that requires special interleaving among

the users. To our knowledge, little attention has been given in the literature to the interleaving

problem in PDIC structures. In [6] a successive IC scheme is proposed with random interleaving

that reduces the demodulation delay but no connection is made between the statistics of the RMAI

terms and the interleaving properties. In this paper we propose a multiuser interleaving scheme

that improves the performance of the PDIC receiver by assigning each user a distinct interleaving

pattern (DIP). We analyze the factors that affect the performance gain due to DIP and demonstrate

this gain under different conditions using computer simulations. We also obtain approximations and

some exact results for the BER of the receiver structures considered. In approximating the BER

of ICUD receivers, the dependence between the variables comprising the RMAI terms precludes

straightforward computation of the variance of the total RMAI. By taking into account the strong

dependence between some of the variables and ignoring the weak dependence among the remaining

ones, we derive a novel estimate of the variance of the RMAI terms that results in a more accurate

application of the standard Gaussian approximation.

In our simulations and performance analysis we consider synchronous channel models for both

the AWGN and frequency-nonselective time-uncorrelated Rayleigh fading channel although a dis-

cussion of the asynchronous and multipath fading channels is also included. The synchronous model

represents a worst-case scenario in terms of interference [7] and for large systems can be approxi-

mated by an asynchronous system with twice the number of users. Hence, the synchronous model

does not limit our qualitative conclusions about the relative performance of the different receiver

structures. The time-uncorrelated fading model reflects rapidly time-variant channels with sufficient

interleaving depth. However, time-correlated fading channels result in worse RMAI and hence the

improvement due to DIP is expected to be larger. We consider systems with both deterministic,

i.e. short, and random, i.e. long, spreading sequences. The BER expressions are slightly different

for both types and so are the conclusions concerning the performance gain due to DIP.

The organization of the paper is as follows. In section 2, the system model is explained and

assumptions stated. The two IC schemes, ICUD and PDIC, are described and compared and con-

clusions are drawn about the relative performance of both structures under various conditions. Two

analytical results concerning the BER floor of the ICUD structure are given and their implications

discussed. In section 3 the need for a special interleaving scheme for PDIC structures, where each
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user is assigned a DIP, is explained. An example DIP scheme is proposed and shown to accom-

modate a large number of users. Asynchronous multipath channels are discussed and an analysis

of the implementation complexity is included. In section 4, performance comparisons are given

between the PDIC scheme, with and without DIP, and the ICUD scheme for both the AWGN and

frequency-nonselective flat Rayleigh fading channel. section 5 describes an approximate method for

obtaining the BER for both PDIC and ICUD structures. Exact expressions for the BER of the

conventional first stage and the pairwise error probability at the output of the conventional first

stage are derived. A novel estimate of the variance of RMAI after IC is also given for single-path

Rayleigh fading channels and derived in the appendix and the improvement in approximating the

BER is demonstrated. The applicability of the standard Gaussian approximation for IC receivers

is also discussed. Finally, a discussion of some practical issues and concluding remarks are given in

section 6.

2 Alternative IC Structures and Relative Performance

Consider K users transmitting synchronously using binary CDMA signaling over a frequency-

nonselective Rayleigh fading channel. At the receiver, a bank of K matched filter correlators

despreads each user’s signal as shown in Figure 1, where the signature sequence of user k is given

by sk. Sampling at the bit rate, we can write the output of the correlator bank for a given sample

point at baseband as

yk(1) = ckbk +
K∑

j=1,j 6=k

rkjcjbj + nk k = 1, . . . , K (1)

where the argument in the parentheses denotes the stage number, ck = |ck|eθk are independent

zero-mean complex Gaussian fading coefficients, bk ∈ {−1, +1} is the data bit of user k, nk is a

zero-mean complex Gaussian additive noise term with variance σ2 = 1
2
E [n∗k nk], and rkj is the

normalized crosscorrelation between the signature sequences of users k and j. The covariance

between the real as well as between the imaginary parts of nj and nk is equal to rkjσ
2. The signal-

to-noise ratio (SNR) for user j is defined as γj = 1
2

E[|cj |2]

σ2 . We consider the interleaver size to be

sufficient to render the fading coefficients uncorrelated from one bit interval, or sample point, to

another. This model represents high-mobility applications where the coherence time is sufficiently

short. We shall also discuss slowly fading channels in section 3 on multiuser interleaving and in

section 6, the Conclusions. For coherent reception, the conventional first stage decision about the

bit of user k is given by b̂k(1) = sgn[ỳk(1)] where

ỳk(1) = Re[e−θkyk(1)] = |ck|bk +
K∑

j=1,j 6=k

rkj|cj|βjkbj + ǹk (2)
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where βjk = cos(θj − θk), and {ǹj} have the same joint distribution as {Re(nj)} or {Im(nj)}.
The output of the second stage, i.e. after one stage of Interference Cancellation (IC), for user 1

(henceforth, our user of interest) is given by

ỳ1(2) = |c1|b1 +
K∑

j=2

2r1j|cj|βj1ej + ǹ1
4
= |c1|b1 + ζ + ǹ1 (3)

where ej = 1
2
(bj − b̂j(1)) represents the error in the first stage decision of user j and ζ

4
=

∑
j ζj is

the total RMAI, where ζj is the RMAI due to user j. For the uncoded system, the final decisions

are given by b̂k(2) = sgn[ỳk(2)], whereas for a system with channel coding, a bank of single-user

soft decision VDs operates on {ỳk(2)} to produce the final decisions. Throughout the paper, we

assume that perfect channel estimates are available at the receiver for the IC stages and soft-decision

VDs. While two-stage detectors (TSDs) may be quite sensitive to channel mismatch [8], practical

systems employing pilot symbols or a pilot channel, e.g. [9], can result in near perfect channel

estimation. Hence, we do not further address the issue of imperfect channel estimates in our work.

The sensitivity of parallel IC detectors to phase and timing errors, while not an issue for our phase-

synchronous model, has been studied in [10] and it was concluded that the parallel IC was fairly

robust to phase and timing errors. This conclusion should carry over naturally to IC receivers which

include decoders for convolutionally coded CDMA systems. In addition to the fading channel model

described above, we study the synchronous unfaded AWGN channel via computer simulations, in

which case ck in (1) represents the fixed (real) amplitude of the signal and {nk} are real-valued in

the above equations. In addition to the importance of the AWGN channel model in its own right,

our conclusions for the relative performance of the two receiver structures, ICUD and PDIC, and

the DIP scheme are different for both the AWGN and fading channels. The applicability of the

proposed receiver structures to the asynchronous AWGN channel and to multipath fading channels

is discussed at the end of section 3.

Now, suppose each user’s data is convolutionally encoded and interleaved, where bj now refers

to the code bit of user j during the interval of interest. Throughout the paper we use the half-

rate convolutional encoder given by the octal generators 5 and 7 and that has a memory order, as

defined in [11], equal to 2. In all BER comparisons, we shall plot the BER against the information

bit SNR γ̀ which is equal to 2γ for the half-rate encoders used. The SNR is equal for all users.

Soft-decision Viterbi decoding is applied at the receiver with a truncation depth of at least 5 times

the memory order. Due to the variations in deinterleaving delays in the DIP scheme, as described

in section 3, the truncation depth is chosen to be larger for some users than others so that the total

deinterleaving plus decoding delay is equal for all users.

The computationally simple approach is to carry out the IC operation to completion before

performing any error correction. As mentioned in the Introduction, we refer to this approach as

Interference Cancellation with Undecoded Decisions (ICUD). A conceptual diagram of this scheme
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is shown in Figure 1. A chip-matched filter followed by a sampler provides the samples r(n).

The samples r(n) are then element-wise multiplied by the spreading sequence sk of each user and

the accumulators complete the despreading operations. The output of the accumulators is then

multiplied by the complex conjugate of each user’s phase and the in-phase component is used for

subsequent processing as in (2). A hard decision is then made on the code bits of users 2 through K.

These decisions are weighted with the fading and crosscorrelation coefficients and then subtracted

from the matched filter output of user 1, y1(1) as described by (3). After IC has been completed, a

deinterleaver followed by a soft-decision Viterbi decoder (VD) processes the signal of user 1, ỳ1(2),

to produce the final bit decisions b̂1(2). In a practical receiver the IC is more easily done in the

spread domain by respreading the code bit estimate of each user using its spreading sequence and

despreading again after the IC is performed.

An alternative, and more complex, structure is the Post-Decoding IC (PDIC) where a bank

of single-user VDs prior to the second stage result in better tentative decisions on the code bits

{b̂j(1)}. A bank of interleavers is needed after the first bank of VDs for re-ordering of the MAI

terms before IC. A second bank of VDs is of course needed after the IC operation, and therefore a

second deinterleaver bank is also required. Figure 2 is a conceptual diagram of the PDIC scheme.

Because of more accurate first stage decisions, we expect overall performance, i.e. the BER after the

second stage, to be improved relative to ICUD. However, two factors may reduce this performance

advantage. In fact, we find that in some special cases ICUD performance is slightly better. The first

such factor is the burstiness of the decoding errors made by the first bank of VDs. Such error bursts

occur when the VD goes through an error event [11] and the average length of those error bursts is

proportional to the average error event length [12]. This causes the RMAI terms in a user’s signal

after the IC stage to be correlated from one time instant to another. Consequently, the second VD

for that user performs poorly due to the introduced channel memory. This problem is similar to that

encountered in concatenated coding schemes where the inner decoder produces bursty errors which

adversely affect the performance of the outer decoder. Inner and outer interleaver-deinterleaver pairs

are used in concatenated coding systems to solve the problem. For PDIC schemes, however, DIP

must be assigned to each user as explained in section 3 to overcome the problem of error burstiness.

The second factor which hurts PDIC performance is particular to fading channels and has to do

with the dependence between the RMAI terms in a user’s signal and that user’s instantaneous

received power. This is best understood by considering a 2-user example, where we are interested

in the signal of user 1. For the ICUD scheme, the occurrence of an error in the first stage decision

for the code bit of user 2 is strongly correlated with the occurrence of an instantaneously large

user 1 signal (|c1|). Thus, non-zero RMAI terms will usually coincide with a large |c1|, resulting

in a higher effective signal to interference ratio at the input to the final VD for user 1. For the

PDIC scheme, on the other hand, a first stage decision error for user 2 is part of an error event

6



out of the first VD, and therefore is not as strongly correlated with a large |c1|. This results in a

slightly lower effective average signal to interference ratio at the input to the final VD. Computer

simulation measurements of the expectation of the differential instantaneous energies (|c1|2 − |c2|2)
given a first stage error in one of the two users’ decisions demonstrate this effect ([13, Table 3.1]

or [14]). Therefore, even though the decision error rate of the first stage is normally lower for

the PDIC scheme, the final BER for the ICUD scheme can be lower than the BER of the PDIC

scheme with DIP on the fading channel. This occurs, however, in the very restricted case of a small

number of users (we have only observed it with 2 and 3 users) on a frequency-nonselective time-

uncorrelated Rayleigh fading channel with fixed crosscorrelations (i.e. short spreading sequences)

and a high signal to noise-power ratio (SNR) operating point. Such a case is shown in Figure 3

which compares the BER of the PDIC (with DIP) and ICUD receivers for 2-user systems on the

fading channel. A similar observation was made in [4, p. 1195] but an alternative explanation was

given. For systems with random spreading sequences or on the AWGN channel the PDIC scheme

with DIP was found to always outperform the ICUD scheme. For completeness, we also mention

that the ICUD receiver is more likely to outperform the PDIC receiver with DIP when hard-decision

Viterbi decoding is used. To summarize, the factors that cause the ICUD performance to approach,

or in special cases exceed, PDIC performance are: a time-varying channel, a small number of users,

deterministic sequences, high SNR, and hard-decision decoding.

Next, we state two additional related results on the performance of two-stage IC detectors. The

following fact [15] is a direct consequence of the behavior described above.

Fact 1: The two-stage detector with the conventional first stage exhibits an irreducible error

floor on the frequency non-selective Rayleigh fading channel with two active users if and only if

their crosscorrelation |r12| > 1/
√

2.

Proof: See appendix.

This result also holds for the case of unequal average SNRs. Note that this result is for uncoded

systems, and so it naturally holds for coded systems but only when decoding is applied after IC,

i.e. in ICUD structures. The PDIC scheme, on the other hand, generally exhibits an error floor for

2 user systems. The following result covers the case when more than 2 users are active.

Fact 2: For the two-stage detector with the conventional first stage, the BER of a user k exhibits

an irreducible floor on the Rayleigh fading channel if |rkj| > 0 for some j 6= k and |rjl| > 0 for

some l 6= k, j.

Proof: See appendix.

In other words, whenever there are more than 2 non-orthogonal users, there shall be an irreducible

BER floor. Note that while this result is proved for the frequency non-selective Rayleigh fading

channel it carries over naturally to the case of a frequency-selective, i.e. multipath, Rayleigh fading

channel.
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The above results, while concerned with the asymptotic case of zero noise power, are indicative

of the comparative performance of PDIC and ICUD receivers in SNR regions of practical interest.

More specifically, the formal result of Fact 1 supports the intuitive arguments given above for the

relative performance of ICUD and PDIC receivers (see also Figure 3). The formal result of Fact 2,

on the other hand, indicates that the relative advantage of ICUD diminishes as the number of users

increases as will be shown in the performance comparisons of section 4. Furthermore, the 2-user

results in themselves have relevance to narrowband communication systems where the interference

is similar to that between two users with high crosscorrelation in a CDMA system. In particular,

the results indicate that such interference may be effectively removed using an ICUD receiver.

3 The Multiuser Interleaving Scheme

As mentioned in the previous section, despite the lower BER in the first stage of PDIC receivers,

the burstiness of the errors made by the first bank of VDs severely degrades the error correcting

capability of the second VD bank. To eliminate this problem, we propose a multiuser interleaving

scheme where users are assigned DIP [16, 14]. In PDIC receivers, the deinterleaving operation prior

to the first VD bank necessitates a re-interleaving of the outputs of the first VD bank to replicate

the bit order which existed when the signals of all the users were added together at the base station

transmitter. This is required in order to carry out IC in the second stage. As a consequence of

the re-interleaving operation, a second deinterleaver is needed for each user prior to the second VD

(Figure 2). The reason why DIP are needed is as follows. While the re-interleaving operation at

the receiver disperses the error (RMAI) bursts out of the first VD bank, the second deinterleaver

before the VD of the user of interest would restore the RMAI bursts if all users employed the same

interleaving and deinterleaving patterns. We illustrate this by an example after we give a description

of the DIP scheme.

In the interleaving scheme we propose, a distinct periodic sequence of delays is applied to the bit

stream of each user. Following the formulation in [17], the delay sequence applied in the deinterleaver

of some user is

d̀n = (n modulo P )D n = 0, 1, 2, · · · (4)

where D is the separation that is introduced between previously adjacent code bits and P is the

period of the delay sequence. The sequence of corresponding delays in the interleaver of the same

user is given by

dn = ([(n + 1)X] modulo P )D n = 0, 1, 2, · · · (5)

where X is the unique integer in the range 1 ≤ X < P that satisfies [(D +1)X] modulo P = P − 1.

When P and D + 1 are relatively prime, such an interleaver and deinterleaver pair is realizable

and introduces a pure delay of (P − 1)D bits at the deinterleaver output. Such interleaver and
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deinterleaver pairs are optimal in the sense that for a desired code bit separation, they achieve both

the minimum deinterleaving delay and storage requirement [18].

For practical cellular systems, we need enough distinct (P, D) pairs, i.e. enough distinct interleaver-

deinterleaver patterns, to accommodate a large number of users; about 60 in the IS-95 system [9],

for example. If we confine the deinterleaving delay between 180 and 210 code-bits, for example,

and require that P,D ≥ 5, we obtain the 57 (P,D) pairs shown in Figure 4. We can easily relax

the deinterleaver delay constraint to allow for more users and still obtain interleaver sizes similar to

those in IS-95 [9], or, if needed, we can assign each of a small number of the interleaving patterns

to two users without expecting performance to be affected measurably for such a large system. The

central (P, D) pairs generally have a smaller deinterleaver delay variation than the extremal (P,D)

pairs (upper left and bottom right of Figure 4). Furthermore, the extremal (P, D) pairs result in

slightly poorer adjacent bit separation but the resulting increase in BER is barely noticeable. Thus,

practically speaking, all valid (P, D) pairs are acceptable.

We now demonstrate the need for DIP through an example of an 8-user system where the users

are assigned the interleaving patterns generated by the central (P, D) pairs joined by a line in

Figure 4. Figure 5 plots the output of the deinterleaver of user 1 during a time interval of 100 code

bits when the input sequences are interleaved by the pattern of user 6. The deinterleaver output

is indicated by the position of the output code bit in the original sequence before interleaving.

The solid line gives the output when the input sequence is interleaved by the pattern of user 1, in

which case the output will simply be the original sequence delayed by 210 code bits, which is the

deinterleaver delay for user 1 in this example. Observe that any error (RMAI) bursts in the signal

of user 1 will remain intact except if the interleaver patterns of the other users are different from

that of user 1.

Since we are proposing the PDIC structure with DIP mainly for the base station receiver due

to limitations on the mobile terminal complexity (presently, at least), one point that needs to be

clarified is the need for DIP on the asynchronous uplink, since the offsets into the interleaver and

deinterleaver tables (i.e. delay sequences) of each user will generally be different with asynchronous

transmission. Hence, it would appear that the deinterleaving operation at the input to the second

VD would maintain the dispersion of RMAI bursts that occurs due to the re-interleaving operation

even with identical interleaving patterns (IIP) since the second deinterleaver of the desired user

and the second bank of interleavers of the interfering users would effectively be unsynchronized

with each other. That is not true, however, because a matched but unsynchronized interleaver and

deinterleaver pair, i.e. using the correct patterns but having unequal offsets into their respective

delay sequences, produce large contiguous segments of the original sequence. This is illustrated in

Figure 6 which shows the deinterleaver output when the interleaving and deinterleaving patterns of

user 1 are used, but the deinterleaver sequence is staggered from the interleaver sequence. The large
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contiguous segments in the deinterleaver output indicate that the RMAI bursts would hardly be

dispersed going into the second VD if IIP are assigned to all users. This example illustrates the need

for DIP in asynchronous transmission. For the multipath channel, more than one implementation

is possible. For example, a Rake combiner could be implemented for each user before the first

deinterleaver. After the VD and interleaver bank re-spread estimates of the multiple paths due to

each user are subtracted from the composite received signal. Then, for each user the estimate of its

contribution is added back again and a Rake combiner is applied prior to the second deinterleaver

and second VD. Again the bursty nature of the RMAI terms persists in the multipath channel if

the IIP scheme is applied. We therefore conclude that, at least in principle, the DIP is needed in

PDIC receivers for asynchronous multipath fading channels.

Next, we consider the receiver complexity of PDIC structures employing DIP. First, we contrast

the complexity of PDIC and ICUD receivers in general. In many practical systems, the VDs process

the data on a frame-by-frame basis, i.e. the decoder starts producing decisions after the whole data

frame has been received. Hence, with appropriate data buffering the same hardware can be used for

the first and second VD banks, with possibly some increase in the memory buffer requirements. The

same argument applies for the two deinterleavers required for each user since they are applied before

the first and second decoding operations, i.e. they are not applied simultaneously. Depending on

the implementation, the interleavers that are required at the receiver in PDIC structures, but not in

ICUD structures, may require additional circuitry. Fixed-function hardware blocks typically have

a few registers for configurable parameters. If such an implementation is used for the interleaver

and deinterleaver functions, then the interleaver may be implemented by the same hardware block

used for the deinterleaver since both operations are not applied simultaneously. PDIC receivers also

require a convolutional encoder to re-encode the bit streams before IC but the complexity of the

encoder is much smaller than that of the decoder. We also mention that software implementation

of the above functions on a digital signal processor results in no increase in hardware complexity

for PDIC structures relative to ICUD structures but such an implementation will not meet the

real-time requirements of some applications.

We now consider the complexity of the DIP scheme versus the IIP scheme in PDIC receivers.

In the DIP scheme the interleaving and deinterleaving functions vary by user. If these functions

are implemented in software or in configurable hardware as described above, then the complexity

of the receivers using the DIP or IIP schemes is the same. Otherwise, different interleaver and

deinterleaver functions must be hardwired on each user’s transceiver card (in the base station),

making it impractical to manufacture, albeit at no increase in the hardware complexity.

From the above discussion it is clear that the relative complexity of the PDIC and ICUD struc-

tures and the DIP and IIP schemes depends heavily on the implementation. In practical systems,

the VD bank is usually implemented with some form of hardware accelarator due to speed require-
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ments. The interleavers and deinterleavers on the other hand may be implemented completely in

software. For such a system, the PDIC receiver will have twice the hardware decoding complexity of

the ICUD receiver for streaming applications, and will have roughly the same hardware complexity

as the ICUD receiver if the decoding is frame-based. In such a system the DIP scheme will not cause

additional hardware complexity since the interleaving and deinterleaving functions are implemented

in software.

4 Performance Comparisons

To gain an appreciation of the performance gain of PDIC with DIP, we rely on computer simulations

in this section and defer the approximate performance analysis till the next section. Figure 7

compares the performance of the ICUD and PDIC schemes, with DIP and IIP, for 8-user systems

with equal crosscorrelations r = 0.35 and equal SNR γ on the frequency-nonselective uncorrelated

Rayleigh fading channel. The central (P, D) pairs of Figure 4 (connected together with a solid line)

are employed by the users. The single-user performance and the performance of the conventional

(matched filter) receiver serve as lower and upper bounds, respectively, on the performance of

suboptimal multiuser detectors, and are included here for comparison purposes. Using the optimized

Gold sequences of length 7 [19] to compare the above detectors for a 4-user system, we found that

the relative performance of the different receiver structures is the same as for the case of equal

crosscorrelations. The BER’s of the different users are generally unequal with Gold sequences,

however, and so for convenience we consider equal user crosscorrelations from now on.

Figure 8 shows the same comparisons on the AWGN channel where the user crosscorrelations

r = 0.25. The advantage of PDIC with DIP over ICUD is clear, reaching about 4 orders of magnitude

in terms of BER for the AWGN channel, and 2 orders of magnitude for the fading channel. The

improvement due to DIP over IIP reaches about 3 dB on the AWGN channel for the SNRs of

interest but is not as significant on the uncorrelated fading channel. The DIP advantage is greater

on the AWGN channel than it is on the fading channel likely because the RMAI terms due to an

error event on the AWGN channel have constant weights throughout the error event, whereas on the

time-uncorrelated fading channel the instantaneously varying weights mitigate the error burstiness

problem which the DIP scheme eliminates. It is also possible that due to the highly structured MAI

on the AWGN channel longer error bursts result compared to the fading channel case, where the

MAI is Gaussian. This observation also gives insight into the comparative performance of the DIP

and IIP structures for indoor and slowly fading channels, where interleaving depth is not sufficient to

decorrelate the Rayleigh fading, as well as channels with strong line of sight. In these channels, the

RMAI terms are likely to have similar weights throughout the error event. This results in a greater

performance advantage for DIP over IIP than for time-uncorrelated fading channels, which represent
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high-mobility applications and insufficient interleaving depth. We mention for completeness that

when hard-decision decoding is used instead of soft-decision decoding, the DIP scheme provides

more significant performance gains on fading channels with 8 active users (not shown).

We now consider systems with random spreading sequences, where we use the spreading factor

Ǹ , the number of chips per information bit, for comparisons since this figure represents the overall

bandwidth spreading regardless of the code rate. The spreading factor N , defined as the number

of chips per code bit, is used in the approximate analysis due to its suitability. For the half-rate

encoders considered in this paper, Ǹ = 2N . Figures 9 and 10 compare the performance of the

different receiver structures for systems with random spreading sequences under different loading

conditions (K/Ǹ) on the frequency-nonselective Rayleigh fading and AWGN channels, respectively.

For the AWGN channel and the given loads, the PDIC scheme with DIP outperforms the ICUD by

up to 3 orders of magnitude and DIP outperforms IIP by 1 to 2 orders of magnitude on the BER.

On the fading channel, however, the BER improvement from PDIC is roughly between 1 and 2

orders of magnitude, and the difference between DIP and IIP is insignificant. Varying the number

of users K while keeping the load K/Ǹ fixed gave almost identical results (not shown here) for both

the fading and AWGN channels. As in the case of systems with deterministic, or short, spreading

sequences, the gains due to PDIC and DIP on the fading channel are smaller than on the AWGN

channel. The only difference in relative performance trends between systems with deterministic and

random code sequences appears in the case of a very small number of users , e.g. 2 or 3, on the

fading channel where the PDIC scheme suffers from the problems discussed in section 2 for the case

of deterministic sequences.

A question arises at this point about the interleaving size needed to realize the best performance

possible with PDIC schemes. Again, this depends on the number of users and type of channel.

For memoryless channels, as the number of users increases the interleaver size needed to realize the

best possible PDIC performance gets smaller. On the other hand, larger interleavers are generally

needed for the AWGN channel than for the Rayleigh fading channel. Both of these observations

are consistent with our understanding of the RMAI burstiness which the DIP scheme attempts to

mitigate. As an example, for the 8-user systems we studied, interleavers from the set shown in

Figure 4 with deinterleaving delays (P − 1)D between 180 and 210 bits result in virtually equal

performance to that from much larger interleavers whose deinterleaving delays (P −1)D are allowed

to be between 1530 bits and 1560 bits. The interleaver sizes needed in a practical system, e.g. IS-95

[9], will be dictated, however, by the correlated fading characteristics of the channel since larger

interleavers than those of Figure 4 are needed for that problem. We also studied performance in

various near-far situations, and found the relative performance of the investigated methods to be

almost identical to the case where all users had equal average energies.

In conclusion, we point out two factors which may increase the importance of DIP in practical
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systems. The first is the fact that the constraint length of the codes typically used in practice is

larger than the memory order 2 encoders we used. For example, the encoder specified in the reverse

link of IS-95 [9] has a memory order of 8. The average burst error length out of the VD considerably

increases with memory order [12], which means that the need for DIP will be greater. The second

factor is that the interleavers will not result in completely uncorrelated fading especially for slowly

fading and strong line of sight channels. This again is expected to increase the average error burst

length as well as the average number of error bursts out of the first VD bank. In any case, the DIP

scheme does not significantly complicate the PDIC receiver when compared to the IIP scheme as

discussed at the end of section 3.

5 Analytical BER Approximations

As explained in section 5.2, which covers the performance analysis of ICUD receivers, it is quite

difficult to obtain an exact expression for the BER of a two-stage detector (TSD) with the con-

ventional first stage when hard decisions are used for subtraction of the MAI. This is also the case

when attempting to obtain the pairwise error probability (PEP) after the second stage in an ICUD

receiver. The PEP, Pd, is the probability that the VD selects an incorrect path over the correct

path at some point in the decoding trellis where the two paths are apart by a Hamming distance

of d. In this section we, therefore, derive approximations to the probability of error for the various

TSD structures considered. For coded systems, the PEP is first obtained and then used in a union

bound to give an approximation, or an upper-bound if the PEP is exact, to the BER. We start

with an analysis of the first stage, for which some exact results may be obtained. The analysis is

carried out mainly for the frequency-nonselective Rayleigh fading channel. For the asynchronous

AWGN channel, a detailed approximate analysis of multi-stage detectors has been carried out in

[20], primarily for uncoded systems but also covering the ICUD structure briefly. In [2], a more

exact analysis was performed also for the asynchronous AWGN channel and uncoded systems, but

the probability of error expressions derived require numerical evaluation. Similar results by the

same authors are given for synchronous uncoded systems in [21].

5.1 First Stage Analysis

We consider first the case where the users employ deterministic, or short, spreading sequences.

Hence, the user crosscorrelations {rjk} are fixed for all bit intervals. In that case, we have the

following expressions [15] for the BER of the uncoded system and the PEP for the convolutionally

encoded system.

Fact 3: For K users with fixed crosscorrelations transmitting synchronously on a frequency non-

selective Rayleigh fading channel with perfect interleaving, the matched filter (conventional) receiver
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followed by a soft-decision VD with perfect CSI (channel state information) has the following exact

pairwise error probability (for user 1)

Pd = qd
1

d−1∑

i=0


 d− 1 + i

i


 (1− q1)

i (6)

where

q1 =
1

2


1−

√
γ1

γ1 +
∑K

j=2 γjr2
1j + 1


 (7)

is the error probability with no error correction and γj = 1
2

E[|cj |2]

σ2 is the average SNR of user j.

Proof:

We seek first to show that the MAI terms in (2) are independent. Due to the independence of the

bits and fading coefficients of the users, the MAI terms in (1) are independent zero-mean complex

Gaussian random variables. Taking k = 1 in (2), we observe that while θ1 is common to all MAI

terms, we can prove (by calculating the joint densities) that {βj1 = cos(θj−θ1)} remain independent

due to the modulo-2π nature of the phase, and have the same PDF (Probability Density Function)

as {cos(θj)} 1. Therefore, {|cj|βj1} are independent Gaussian random variables.

Now, we desire to calculate the variance of the MAI terms. Since the MAI terms have zero mean,

the variance of the MAI term representing the contribution of user j is equal to E[b2
jr

2
1j|cj|2β2

j1].

Since |cj|βj1 is zero-mean Gaussian with variance equal to 1
2
E[|cj|2], the desired variance is given

by 1
2
E[|cj|2]r2

1j = γjr
2
1jσ

2 = Ejr
2
1j where Ej is the average code bit energy for user j. Since the

MAI terms are also independent of the noise term ǹ1, the total interference plus noise variance is

therefore
∑K

j=2 γjr
2
1jσ

2 + σ2. We can now define an equivalent SNR for user 1, γe1, given by

γe1 =
1

2

E[|c1|2]∑K
j=2 r2

1jγjσ2 + σ2
=

γ1∑K
j=2 r2

1jγj + 1
(8)

Substituting γe1 in the expression for the BER of a single-user on a frequency-nonselective Rayleigh

fading channel with additive Gaussian noise [22, Equation 14-3-7] we obtain the BER of user 1 for

an uncoded system

q1 =
1

2

(
1−

√
γe1

1 + γe1

)
(9)

Substituting (8) into (9) we arrive at the form given in (7).

For the PEP, we note that Pd for a single user on a frequency-nonselective Rayleigh fading

channel is equal to the error probability for a user employing dth-order diversity with maximum

ratio combining at the receiver but with no error-control coding. That error probability is given

by [22, Equation 14-4-15]. Substituting the equivalent SNR, γe1, we obtain Pd as given in (6).

Alternatively, we could derive (6) by expressing the VD branch metric as a Hermitian quadratic

1The PDF of βjk for all j and k can be shown to be given by fβ(x) = 1

π
√

1−x2
, −1 < x < 1.
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form in complex Gaussian variates and utilizing the distribution properties of such a form ([23,

Appendix B]). That derivation is given in [13]. ♦
It should be emphasized that no approximation is used in the BER expressions given in Fact

3, i.e. the uncoded BER and PEP for the first stage are exact. Having obtained the PEP Pd we

now seek the code-bit error probability, p1, out of the first stage VD bank. This will be needed for

the BER analysis of PDIC systems which depends explicitly on the first stage error probability. A

different approach is taken for the analysis of ICUD receivers. For the first stage error probability,

we use the union bound to obtain an upper bound on the code bit error rate, p1. Thus, for a

half-rate convolutional encoder, using simple probability arguments we can write

p1 <
∞∑

d=df

1

2
dAdPd (10)

where Ad is the number of weight d paths. The first 18 terms are often used in the literature to

compute the bound in (10), e.g. [24], but fewer terms are usually sufficient to compute the bound

quite accurately, unless the crosscorrelations r1j are very high.

For systems with random spreading sequences r1j = 1
N

∑N
l=1 s1lsjl, where sjl is the l−th chip in

the spreading sequence of user j and is equal to ±1 with equal probability. The spreading factor,

N , is equal to the number of chips per code bit. In the case of random sequences, the MAI terms

are not exactly Gaussian, but the total MAI plus noise can be modeled, accurately in many cases,

by a Gaussian random variable. This approach, sometimes referred to as the Standard Gaussian

Approximation (SGA), is based on application of the Central Limit Theorem (CLT) - see any

probability text - to the sum of identically distributed zero-mean, albeit dependent in this case,

random variables. The dependence between the MAI terms is due to the dependence between the

crosscorrelations {r1j}, which are nevertheless pairwise uncorrelated [20]. Except for certain values

of K and N , however, the dependence between the MAI terms is quite mild and the SGA applies

well. For calculation of the variance of the total MAI and noise, it can be easily shown that E[r2
1j]

evaluates to 1/N . Since the MAI terms are pairwise uncorrelated and have zero mean, we can

simply add the variances of all terms to obtain the desired variance. The resultant equivalent user 1

SNR is therefore given by (8) with r2
1j replaced by 1/N . For the case of equal user energies, γj = γ,

we obtain the following familiar approximation for the equivalent SNR

γe ≈
(

K − 1

N
+

1

γ

)−1

(11)

which can then be used to obtain the BER and PEP by substituting in (9) and (6),respectively.

Computer simulation results, not shown here, verify the accuracy of the above approximation for

uncoded systems for a wide range of values of K and N while for convolutionally encoded systems

the accuracy is not as high, particularly for small K and large N [13].

15



5.2 Second Stage Analysis: ICUD

The difficulty in obtaining a closed-form expression for the BER of a TSD with a conventional first

stage making hard decisions lies in computing the probability distribution of the RMAI plus noise.

This can be seen by writing out the expression for the RMAI due to user j in the signal of user 1,

which we denote by ζj, as follows

ζj = r1j|cj|βj1{bj − sgn[|cj|bj +
∑

l 6=j

rjl|cl|βljbl + ǹj]} (12)

The strong nonlinearity due to the hard decisions at the first stage precludes the matrix-type

formulations possible with linear (soft) IC schemes. Adding to the difficulty are the following

dependencies between the RMAI terms {ζj} and the instantaneous signal strength |c1| of the user

of interest:

• The RMAI terms {ζj} are dependent because of the {|cl|} random variables common to all, the

mutual dependence between the noise terms {ǹj}, and, for random sequences, the dependence

among {rkj}.

• ζ =
∑

j ζj and ǹ1 are dependent because of the mutual dependence between the noise terms

{ǹj}.

• |c1| and ζ are dependent because of the direct dependence of each element of {ζj} on |c1|.

We, therefore, resort to approximating the RMAI, ζ, as a Gaussian random variable by invok-

ing the Central Limit Theorem for dependent variables [25] since ζ is the sum of the zero-mean

identically distributed, albeit dependent, random variables {ζj}. In general, the conditions under

which the CLT may be successfully applied to a sum of dependent random variables are quite mild,

but they are difficult to verify [25]. We shall, therefore, presuppose the applicability of the CLT

to the RMAI and subsequently verify the accuracy of the resultant approximations using computer

simulations. Modelling the MAI as Gaussian has been used in the analysis of CDMA systems for a

long time, e.g. [26], where the total MAI variance is computed as the sum of the variances of the

individual MAI terms. However, due to the dependence relations described above for the RMAI

terms, the estimation of the variance will be more involved in this case.

We now seek to obtain Var[ζj] which is equal to E[ζ2
j ] = E[(2r1j|cj|βj1ej)

2] since E[ζj] = 0

from symmetry arguments. Note that each of βj1, |cj|, and, for random sequences, r1j is pairwise

dependent with ej. Fortunately, these dependencies are not very strong and can be ignored except

for the dependence between |cj| and ej. Thus, we approximate the desired variance by Var[ζj] ≈
4 E[r2

1j] E[β2
j1] E[(|cj|ej)

2]. From basic probability we can show that E[β2
jk] = 1/2 and, for random

sequences, E[r2
1j] = 1/N . Finally, the last remaining term in the variance formula evaluates to (see
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the Appendix for proof)

E[(|cj|ej)
2] = Ej


1−

√√√√ Ej

Ej + η2
j

(
3η2

j + 2Ej

2η2
j + 2Ej

)
 (13)

where

ηj =
∑

l 6=j

Elr
2
jl + σ2 (14)

for short (deterministic) sequences, and

ηj =
1

N

∑

l 6=j

El + σ2 (15)

for long (random) sequences and η2
j represents the variance of the MAI plus noise as seen by user

j at the first stage output. In obtaining the variance of the total RMAI plus noise, we can once

more ignore the mutual dependence, which is not very strong, between the RMAI terms {ζj} and

the thermal noise term ǹ1 of our user of interest. Thus, the variance of the total RMAI plus noise

seen by user 1 is given by Ψ1 = Var[ζ + ǹ1] ≈ Var[ζ] + σ2 which may be expressed as

Ψ1 ≈ 2
K∑

j=2

r2
1jEj


1−

√√√√ Ej

Ej + η2
j

(
3η2

j + 2Ej

2η2
j + 2Ej

)
 + σ2 (16)

and r2
1j is replaced by its expectation 1/N for the case of random sequences. We can now define an

equivalent (single-user) SNR after the IC for user 1 as

γe1(2) =
E[|c1|2]

2Ψ1

=
E1

Ψ1

(17)

Substituting γe1(2) in Equation (9), we obtain an approximation to the uncoded BER of user 1

after the IC of the second stage

q1(2) ≈ 1

2


1−

√√√√ γe1(2)

1 + γe1(2)


 (18)

It should be mentioned that by using Equation (9), we have ignored the dependence between ζ and

each of |c1| and b1, since the derivation of (9) involves conditioning on both |c1| and b1 and then

taking the expectation. Strictly speaking, conditioning on either of |c1| and b1 affects Ψ1, which

would be a conditional variance in this case. In fact, conditioning on b1 introduces a bias in ζ. This

has also been observed on the asynchronous AWGN channel [20]. However, these effects are weak

and can be ignored as we shall see in assessing the accuracy of the approximation. For uncoded

systems, the approximation is very accurate for systems with deterministic and random sequences,

in contrast to an approximation that ignores the dependence between |cj| and ej in estimating the

variance Ψ1 [13]. To obtain the PEP at the output of the second VD, Pd(2), we substitute q1(2)
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in place of q1 in Equation (6). Finally, we use a union bound to obtain an approximation to the

information bit error rate for the ICUD scheme

Pb ≈
∞∑

d=df

Bd Pd(2) (19)

where Bd is the total number of nonzero information bits on all weight d paths. Note that the union

bound thus applied is no longer an upper bound due to the approximations involved in arriving at

the PEP.

Figures 11 and 12 compare the approximated BER and that obtained by simulations for coded

systems (ICUD) with 8 users having r = 0.15 and r = 0.25, respectively, and equal received energies.

Also shown in the figures is the approximate BER obtained when the dependence between |cj| and

ej is ignored. In the figures, we refer to this approximation as the “first approximation” and to

our approximation as the improved approximation. In both figures, the improved approximation is

clearly more accurate. The weakness of the approximations at low SNR is due to the well-known

looseness of the union bound. Eliminating a few significant terms from the summation (19) of the

Union Bound (UB) improves the accuracy at low SNR without usually affecting the bound at high

SNR. The approximate BER using the first 5 terms of the UB is shown in Figure 11. The same

technique has been used elsewhere in the literature, e.g. [24, Figures 2 and 3] where only the first

6 terms of the UB are used.

For systems with long sequences and a spreading factor N , the BER performance is much worse

than that of systems using fixed sequences having r2 = 1/N . This is true when subtractive IC

is applied with error correction, whether the ICUD or the PDIC scheme is used. Hence, the

approximation is not valid for IC structures with long sequences when coding is used. This can be

explained by the very poor suitability of the standard VD branch metric for the RMAI statistics

in this case. In fact, based on this observation, in [27] we model the RMAI as Gaussian with

time-dependent variance, and by applying modified VD branch metrics that are a function of the

time-varying crosscorrelations, we obtain improved performance.

5.3 Second Stage Analysis: PDIC

The foregoing improved variance estimate was possible for ICUD systems because we could easily

express ej directly in terms of known parameters (refer to (12) and (3)). For PDIC systems,

on the other hand, the first stage errors made by the single-user VDs are due to error events,

and a computation as in (13) is not possible. However, the dependence between ej and |cj| at

any given instant is also much weaker than in the ICUD case, as we mentioned earlier in our

discussion about the observed RMAI bias (section 2). Thus, we estimate the desired variance by

Var[ζj] = E[ζ2
j ] ≈ 4 E[r2

1j] E[β2
j1] E[|cj|2]E[e2

j ] = 4 E[r2
1j] Ej pj where pj is the first stage code bit

error rate, which can be upper-bounded (tightly in most cases) using (10). As we did for the ICUD

18



case, the variances of the individual RMAI terms and noise are added to obtain

Ψ1 ≈ 4
K∑

j=2

E[r2
1j] Ej pj + σ2 (20)

The remaining steps are identical to those for the ICUD scheme. Namely, we use (17), (18), (6), and

(19) to obtain the information BER. For the IIP implementation of PDIC, the analysis is further

complicated by the correlations between {ζj} from one time instant to another due to the burstiness

of errors out of the first VD bank. We, therefore, rely on computer simulations to measure the BER

for the IIP case.

Figure 13 shows the approximate and measured BER for an 8-user system with r = 0.25 and

equal energies using the PDIC structure with DIP. As we did for the ICUD scheme, eliminating

a few significant terms from the UB summation improves the accuracy at low SNR. In this case,

using the first 3 terms of the UB gives the best agreement with simulations. It is interesting to

note that the approximation agrees reasonably with simulations considering the fact that we apply

the union bound twice. This is because the approximation errors are not of the same polarity: For

high crosscorrelations r1j, the first application of the union bound is a loose upper bound on p1,

the first stage code bit error probability for user 1, since the MAI variance is high even as γ →∞.

Yet, as r1j increases, the Gaussian approximation underestimates the error probability. The fact

that the SGA gives optimistic BER results is well-known for uncoded systems and this is more

accentuated for systems with error control coding because the VD branch metric is optimized for

additive Gaussian noise. On the other hand, for low r1j the union bound becomes a tighter upper

bound as γ increases while the Gaussian approximation underestimates the BER less severely.

It should be mentioned that in [28] reasonable agreement was obtained between the BER mea-

sured by simulation and the estimate obtained by applying a Gaussian approximation equivalent to

ours for PDIC systems with random sequences. However, asynchronous systems were considered in

that study, and the agreement was demonstrated for successive IC. The statistics of the RMAI are

quite different for asynchronous systems, and are more easily modeled as Gaussian, than they are

for synchronous systems. Furthermore, successive schemes have a combination of MAI and RMAI

terms in any user’s signal (except the last which only has RMAI terms), and MAI is better approx-

imated as Gaussian than RMAI. Finally, it should be pointed out that for heavily loaded systems

these approximations may be poor due to the high crosscorrelation between the RMAI terms and

hence the inaccuracy of the variance estimate. In such cases we rely on computer simulations for

performance evaluations.
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6 Conclusions

In this paper, we studied two alternative structures, which we called the ICUD and PDIC schemes,

for subtractive IC receivers used to demodulate convolutionally-encoded CDMA systems. We

compared the performance of synchronous systems on both AWGN channel and the frequency-

nonselective time-uncorrelated Rayleigh fading channel. We also discussed the cases of the asyn-

chronous AWGN and multipath fading channels. We found that while PDIC usually has better

performance than ICUD, it is possible, albeit in very special cases, for the ICUD receiver to out-

perform the PDIC receiver. We studies the RMAI terms and concluded that the PDIC scheme

does not realize its full potential unless DIP are employed by different users. We proposed such a

multiuser interleaving scheme for practical systems and significant improvements were realized on

the AWGN channel. The gain due to DIP increased with higher SNR indicating that it pushed the

BER floor due to the conventional first stage lower. On the flat time-uncorrelated fading channel,

improvements due to DIP were more modest. However, we pointed out that DIP is important in

indoor and slow fading scenarios, or whenever the interleaving depth is insufficient to completely

decorrelate the fading. Furthermore, the larger constraint length of the encoders used in practical

systems compared to the encoders used in our simulations results in longer error bursts out of the

first VD bank, and hence a greater need for the DIP scheme. The applicability of the DIP scheme to

receivers with Rake combining for multipath fading channels was also demonstrated. Nevertheless,

further work is needed to verify and quantify such improvements on practical fading channels. The

complexity of both PDIC and ICUD structures was compared. It was shown that the added hard-

ware complexity of PDIC structures is not significant and its dependency on the implementation

was discussed.

Existence of the BER floor in systems employing ICUD was investigated. The implications

of these findings for practical, including narrowband, systems were discussed. In particular, we

conclude that for systems with a small number of interfering users, ICUD receivers might be more

suitable than PDIC receivers.

A family of approximations, and some exact results, were derived for the error probability of

various receiver structures considered in the paper. In particular, a novel estimate of the RMAI

variance was derived resulting in a better approximation to the BER of ICUD receivers. The

applicability of the Gaussian-based approximations was assessed for the various receivers under

different conditions. As expected, the approximations were inaccurate for heavily loaded systems.

7 Appendix

Proof of Fact 1: Without loss of generality, assume b1 = −1. Equation (3) in the zero-noise case
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now becomes

ỳ1(2) = |c1|(−1) + 2r12β21|c2|e2 (21)

and an error will occur when ỳ1(2) > 0. Call this the event E. Thus, {E} ⇔ {2r12β21|c2|e2 > |c1|}.
From this we have,

{E} ⇒ {2|r12β21||c2| > |c1|} (22)

since |e2| ≤ 1, and

{E} ⇒ {e2 6= 0} (23)

as well. But {e2 6= 0} means, by definition, that b̂2(1) 6= b2. Since b̂2(1) = sgn[|c2|b2 − r12|c1|β12],

then {e2 6= 0} ⇒ {b2 6= sgn[|c2|b2 − r12|c1|β12]}. Thus, {e2 6= 0} ⇒ {|c2| < |r12β12||c1|}. But, we

proved that {E} ⇒ {e2 6= 0}. Thus,

{E} ⇒ {|c2| < |r12β12||c1|} (24)

Combining (22) and (24), we can write {E} ⇒ {2|r12β12| > |c1|
|c2| > 1

|r12β12|} (since β12 = β21). Thus,

{E} ⇒ {β2
12 > 1/2r2

12}.
But β2

12 ≤ 1. Thus, {E} ⇒ 1/2r2
12 ≤ 1. Thus, {E} ⇒ |r12| ≥ 1/

√
2. This proves the ’only if’

part of the claim.

Now assume that |r12| ≥ 1/
√

2. Hence, 1/2r2
12 ≤ 1. Thus {β2

12 > 1/2r2
12} occurs with non-zero

probability. We may now hypothesize |c2| large enough to satisfy (22) yet small enough to satisfy

(24). Finally, we hypothesize polarities such that β21e2 > 0 for r12 > 0 or β21e2 < 0 for r12 < 0.

The variables in this hypothesized composite outcome are independent, and cause the event {E}
to occur. Hence, an error will occur with non-zero probability if |r12| ≥ 1/

√
2. This proves the ’if’

part of the claim. ♦

Proof of Fact 2: We start with the K=3 case, with positive crosscorrelations. For the zero-noise

case, and from (3) and the decision rule for b̂1(2), it is clear that b̂1(2) 6= b1, which we call the event

E, occurs iff ∣∣∣∣∣∣∣∣

(RMAI)1︷ ︸︸ ︷
r12|c2|[b2 − b̂2(1)]β12 + r13|c3|[b3 − b̂3(1)]β13

∣∣∣∣∣∣∣∣
> |c1| (25)

and

sgn[(RMAI)1] 6= sgn[b1] (26)

This means that {E} implies {b̂2(1) 6= b2}, {b̂3(1) 6= b3}, or both. We seek to prove that for at

least one of these 3 ways in which {E} can occur, {E} occurs with a non-zero probability provided

r12, r23 > 0.
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Hence, consider the case {b̂2(1) 6= b2} ∩ {b̂3(1) = b3}, and call it the event E2. From (2) and the

decision rule for b̂j(1), {E2} occurs iff the following 3 conditions are met
∣∣∣∣∣∣∣∣

(MAI)2︷ ︸︸ ︷
r21|c1|b1β12 + r32|c3|b3β32

∣∣∣∣∣∣∣∣
> |c2| (27)

and

sgn[(MAI)2] 6= sgn[b2] (28)

and

sgn[|c3|b3 + r32|c2|β23b2 + r31|c1|β13b1] = sgn[b3] (29)

When {E2} results in {E}, the conditions described by (25) and (26) become

|2r12|c2|β12| > |c1| (30)

sgn[(b2 − b̂2(1))β12] 6= sgn[b1] (31)

Hence, the conditions in (27) through (31) occur iff {E ∩ E2} occurs.

Now, for any r12 > 0 we can hypothesize |c2| large enough to satisfy (30). Similarly, for any

r12, r23 > 0 and any |c2|, we can hypothesize |c3| large enough to satisfy (27) and (29). For (28)

and (31), we hypothesize b3, β32 > 0, b1, β12 < 0, and b2 < 0. All the variables in this hypothesized

composite outcome are independent. Hence, for any r12, r23 > 0, {E} can occur with non-zero

probability.

Since the polarities of the interfering signals and the signal of the user of interest are positive

or negative with equal probability and are independent from each other, we can construct similar

proofs for all mixtures of positive and negative crosscorrelations. Thus, for any |r12|, |r32| > 0, event

{E} occurs with a non-zero probability. The proof may be easily generalized to the K-user case by

hypothesizing the composite event of all but three users having no first stage error. ♦
Proof of Equation 13 : We derive the desired expectation as follows

E
[
|cj|2e2

j

]
= E|cj |

(
|cj|2E

[
e2

j

∣∣∣ |cj|
])

(32)

The conditional expectation can be expressed as

E
[
e2

j

∣∣∣ |cj|
]

=
∑

y∈{−1,0,1}
y2p(y|x)

= p(−1|x) + p(1|x)

= 2p(−1|x)

where p(y|x)
4
= p

ej||cj |
(y|x) is the conditional probability mass function of ej given |cj|, and the last

step is due to problem symmetry. Now,

p(−1|x) = Pr(bj = −1, b̂j = 1| x)
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= Pr(b̂j = 1| x, bj = −1) Pr(bj = −1)

=
1

2
Q(x/ηj)

where Q(x) = 1√
2π

∫∞
x e−t2/2dt , and η2

j =
∑

l 6=j Elr
2
lj + σ2 is the variance of the MAI seen by user j.

Substituting this result back in (32),

E
[
|cj|2e2

j

]
=

∫ ∞

0
x2 Q(x/ηj) f|cj |(x) dx (33)

where f|cj |(x) = x
α2 e−x2/2α2

is the Rayleigh PDF of |cj| and α2 = Ej = γjσ
2. Applying the change

of variable x2 = A, the r.h.s. (right hand side) in the above equations can be expressed as

∫ ∞

0
A

e−A/2α2

2α2
Q(

√
A/η2

j ) dA

=
∫ ∞

0

(
1√
2π

∫ ∞
√

A/η2
j

e−t2/2 dt

)

︸ ︷︷ ︸
U

Ae−A/2α2

2α2
dA

︸ ︷︷ ︸
dV

Evaluating the above integration by parts,
∫∞
0 U dV = UV |∞0 − ∫∞

0 V dU where U and dV are as

indicated. We use Leibniz’s theorem for differentiation of an integral to evaluate dU , perform a

second integration by parts and after some manipulations, arrive at

E
[
|cj|2e2

j

]
=

α2

2
− 1

2ηj

√
2π

[∫ ∞

0

(
A1/2e−cA + α2A−1/2e−cA

)
dA

]
(34)

where c =
2η2

j +α2

2η2
j α2 . Using the integral form of the Gamma-function

∫∞
0 tn−1e−atdt = Γ(n)/an, where

a, n > 0, we obtain

E
[
|cj|2e2

j

]
=

α2

2
− 1

2ηj

√
2π

[
Γ(3/2)

c3/2
+ α2 Γ(1/2)

c1/2

]
(35)

Using Γ(3/2) =
√

π/2 and Γ(1/2) =
√

π, and rewriting c and α in terms of the system parameters,

and after some manipulation we arrive at Equation (13).
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Figure 1: Conceptual Diagram of ICUD (showing IC for user 1 only).
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Figure 2: Conceptual Diagram of PDIC (showing IC for user 1 only).
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Figure 3: PDIC versus ICUD on a flat frequency-nonselective Rayleigh fading channel for 2-user systems
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Figure 7: PDIC (DIP and IIP) versus ICUD for 8 users with r = 0.35 on the flat frequency-nonselective Rayleigh fading
channel. The single-user bound and conventional detector performance are shown for reference.
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conventional detector performance are shown for reference.
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frequency-nonselective Rayleigh fading channel. In the legend, N represents Ǹ .
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Figure 10: PDIC, with and without DIP, versus ICUD for 6 users with Ǹ = 32 and 8 users with Ǹ = 24 on the AWGN
channel. In the legend, N represents Ǹ .
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Figure 11: Approximate versus simulated BER of the ICUD scheme for an 8-user system with r = 0.15 on the fading channel.
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Figure 13: Approximate and measured BER for 8 users with r = 0.25 using PDIC with DIP on the Rayleigh fading channel.
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