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Abstract -- Recently, the authors introduced a novel algorithm
for long range prediction of fading channels [1-4]. This
algorithm finds the linear Minimum Mean Squared Error
(MMSE) estimate of the future fading coefficients given a fixed
number of previous observations. In this paper, we show that
the superior performance of this algorithm is due to its lower
sampling rate relative to the conventional (data rate) methods
of fading prediction. We also enhance the algorithm by an
adaptive prediction and tracking method that increases
accuracy and maintains the robustness of long-term prediction
as the physical channel parameters vary. Finally, we show that
large improvements in the bit error rate (BER) are possible
when the proposed prediction method is used. In particular,
analysis of the channel inversion with threshold technique i s
presented to demonstrate that the BER can be reduced to the
level of and beyond the additive white Gaussian noise (AWGN)
channel.

1. INTRODUCTION
It is well known that deep fades in signal power due

to multipath radio propagation severely degrade the
performance of mobile radio systems and impose high power
requirements [5-7]. Since the channel changes rapidly, the
transmitter and receiver are not generally optimized for
current channel conditions, and thus fail to exploit the full
potential of the wireless channel. The shorter wavelengths
proposed for future mobile radio will only serve to aggravate
these problems.

Propagation studies in a variety of environments show
that the multipath signal consists primarily of a small
number of discrete sinusoidal components (often 10 or fewer)
[1, 4, 5].  The superposition of these components changes
rapidly as the vehicle moves, producing the familiar fast-
fading signal envelope observed in practice. However, the
amplitude, frequency and phase of each component change on
a much slower time scale, e.g. on the order of 100 times the
coherence time of the signal envelope.  This variation is slow
enough that the fading coefficient can be predicted far beyond
the coherence time.  In particular, these estimates can be used
to forecast signal fades before they occur.  This prediction
capability can provide enabling technology for adaptive
coding [8-10], accurate power control, reliable transmitter
and/or receiver diversity and many other components of
wireless systems.

In [1-3], we described the prediction algorithm which
characterizes the channel as an autoregressive model (AR)
with slow sampling rate, and computes the MMSE estimate
of the future fading coefficient sample based on a number of

past observations. This algorithm can reliably predict future
fading coefficients far beyond the coherence time for a flat
fading channel with an arbitrary number of scatterers.  In
Section 2, we provide the insight into the performance gains
of this prediction technique relative to the traditional
approaches [11].  In Section 3, we augment the algorithm in
[1-3] with an adaptive method which reduces error
propagation and tracks channel parameter variations.  Finally,
performance gains made possible by channel prediction are
illustrated by analyzing the channel inversion with threshold
method in Section 4.

2. PREDICTION OF THE FLAT FADING CHANNEL
In this work, we concentrate on flat fading signals

which result from interference between several coherent
scattered components.  The received signal is given by [5]

c(t) = ∑
n=1

N
 An e j(2πfnt+φn), (1)

where (for the nth scatterer) An is the amplitude, fn is the
Doppler frequency, and φn is the phase.  Due to multiple
scatterers, the fading signal varies rapidly for large vehicle
speeds and undergoes "deep fades".  Our approach to
prediction of future fading conditions is based on the fact that
the parameters An, fn and φn vary much slower than the actual
fading coefficient c(t).

The discrete-time system model at the output of the
matched filter and sampler is given by

yk = ck bk + zk, (2)
where ck is the fading signal c(t) sampled at the symbol rate,
bk is the data sequence, and zk is the discrete AWGN process.
Even for a modest number of scatterers, c(t) and ck can be
accurately modeled as correlated complex Gaussian random
processes with Rayleigh distributed amplitudes and uniform
phases [5-7], where the accuracy increases as N in (1) grows.
In contrast to conventional channel estimation, our objective
is to predict the future behavior of the fading coefficient, ck,
rather than to estimate its current value because even with
perfect estimation, communication over fading channels is
severely limited due to fades. By prediction we imply
estimating an entire future block of coefficients ck based on
the observation of the received signal during an earlier time
interval.

Our linear prediction (LP) method is based on the AR
channel modeling [1].  We  form the linear MMSE prediction
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of the future channel sample c^ n based on p previous channel
samples cn-1...cn-p:

c^ n = ∑
j=1

p
 djcn-j (3)

(Actually, the estimates of the past samples cn-j are used
beyond the observation interval.)  Note that the samples have
to be taken at least at the Nyquist rate, which is twice the
maximum Doppler frequency, fdm [5,6]. The sampling rate we
choose is close to this Nyquist rate and therefore is much
lower than the data rate in (2). The predicted samples are
interpolated to forecast the fading signal at the data rate [1-3].
To date, most investigations of fading channel modeling and
estimation assume sampling at the data rate (e.g., [11]).  As a
result, even with very accurate coefficient adjustment, it is
impossible to specify future channel coefficients from past
observations  the filter length is not long enough. This can
be illustrated by considering the parameters involved in the
MMSE prediction.

We concentrate on the case when N in (1) is infinite
(Rayleigh fading), although the discussion below also applies
to the more practical case of a modest number of scatterers
with the underlying channel parameters varying slowly.  The
channel is modeled as the complex stationary Gaussian
process with the autocorrelation function r(τ) = J0(2πfdmτ),
where J0(.) is the zero-order Bessel function of the first kind
[5].  The plot of this function and of the experimentally
obtained autocorrelation function for N=16 are shown in
Figure 1.  For illustration, let us fix the data rate at 25Kbps,
the maximum Doppler shift at 100Hz, and the sampling rate
at 500Hz (2.5 times the Nyquist rate). We consider the LP of
order p, where the objective is to find the model coefficients dj

which minimize the MSE, E[|e|2]=E[|ck- c
^

k|
2], where ck is an

arbitrary future fading coefficient, and c^ k  is its estimate given
by the linear combination of p past samples (0 is the
reference time, so the observations are taken prior to τ = 0):

c^ k = ∑
j=0

p-1
 djc-j (4)

The minimum MSE is given by

E[|e|2] = 1 - ∑
j=0

p-1
 djrk+j (5)

where rm = E[cnc
*
n+m] (see Figure 1).

Now, suppose we fix p and assume that the past
observations in (4) are taken at the data rate of 25KHz. These
observation are spaced at 1/250 of a normalized time (x-axis)
unit of Figure 1. Thus, all the observation are very close to
each other and the time τ = 0 in Figure 1 (they span only a
fraction of a single unit (-1,0] ), even if p is reasonably large.
Thus, the autocorrelation values, rk+j, used in (5) are all
approximately the same and close in value to rk (Figure 1).
When the future sample to be predicted is located further than
a few bits from the observations, these autocorrelations
become small, and the MSE (5) increases.  In particular, if
we try to predict the future coefficient about half a unit ahead
(this corresponds to the first zero-crossing of the
autocorrelation function and is often defined in terms of the
coherence time τ0 as approximately 2πτ0 [7]), all these
autocorrelations become negligible, and prediction becomes
impossible.

Now, let us consider prediction at the lower sampling
rate of 500Hz. It is interesting to observe that multiples of
half-units of the x-axis in Figure 1 corresponds to spacing
between the samples taken at the Nyquist rate. Since we
oversample, our observations are spaced at 1/5 of the single
time unit - still much further apart than the observations
taken at the data rate. Thus, the autocorrelation values used in
(5) significantly vary and the samples are sufficiently
separated to achieve reliable long term prediction. Even when
some autocorrelations are low, the others are large, since they
result from sampling large sidelobes of the autocorrelation
function (not accessible when the data rate is used).  As a
result, the MSE (5) is much smaller.  Thus, when the
sampling rate is reduced greatly relative to the data rate, but
the filter length p remains the same, prediction much further
ahead becomes feasible [12].  For our method, the future
point is just the next sample at the same sampling rate as
used for the observations (see (3)). Since it might be
desirable to predict further ahead than one sample, we use the
sliding window approach (3) to predict cn+1, cn+2, ... , and
substitute estimates on the right-hand side of (3) when the
observations points are no longer available.  Since we often
refer to two different rates in this paper, we will use the index
k for the data rate, and index n for the lower sampling rate
throughout.

By using the proposed prediction algorithm, we can
successfully predict future channel parameters [1-3].  In order
to access performance advantages of the proposed prediction
technique relative to the conventional approach, the following
channel inversion with threshold method is investigated    
[3, 13]. The channel samples taken during the observation
interval are sent to the transmitter, which applies the linear
prediction, and interpolates to produce predicted fading
values at the data rate.  The prediction method beyond the
observation interval is adaptive and also involves feedback as
explained in Section 3. The transmitter interrupts the
transmission for the k-th symbol if the power level, |c^ k|

2, is
below previously chosen threshold value. Furthermore, if |c^ k|

2

is above the threshold, the transmitter sends the data bits, bk,
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Figure 1. The theoretical autocorrelation function for the
Rayleigh fading channel (solid line) and the experimental
autocorrelation function for N=16 oscillators (dotted line)
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by multiplying them with the inverse of the predicted c^ k

values (3). This power adjustment is not proposed as a
practical solution, since it will result in large transmitter
power fluctuations. It is considered here to access
performance advantages of the proposed prediction technique.
We are currently investigating efficient adaptive coding and
modulation methods for transmitter optimization [8-10]. The
bit error rate and the throughput of this method are analyzed
in Section 4. First, we discuss in the following section the
adaptive channel prediction and tracking method used jointly
with the channel inversion technique.

3. ADAPTIVE PREDICTION AND TRACKING

In [1-3], we described how channel parameters dj and
future estimates c^ n are obtained from the initial observations
of the fading channel.  We refer to the number of observation
samples as the observation interval. The main factors which
affect the prediction accuracy of this algorithm can be
summarized as: (a) previously predicted values used to
predict the future fading coefficients (in (3), c^ n-j is used
instead of cn-j later in the prediction); (b) limited number of
observations used in initial acquisition of the LP coefficients
(short observation interval); (c) limited order p of the AR
model; (d) fixed LP coefficients dj used throughout the entire
future prediction block; (e) additive noise and decision-
directed tracking.  

Factor (a) causes error propagation later in the
prediction and often makes prediction accuracy unacceptable
as shown in Figure 2a.  In practice, it is not necessary to
predict ahead further than a few samples (several hundred of
data symbols).  As new actual observations are collected,
they can be used in the LP equation.  This significantly
reduces error propagation as shown in Figure 2a where the
range of prediction is one symbol (50 bits in this case).
Larger ranges (several symbols) result in similar performance
as can be observed from the initial segment of the dash-
dotted curve of Fig. 2a.

Factors (b-d) result in inaccurate channel modeling. In
particular, the constant parameter assumption in the
deterministic model, e.g. the incident angle of radio wave
(and the Doppler shift), are assumed constant during a data
block) is not strictly true, and thus (d) causes parameter
mismatch [4,15].  For example, as mentioned in [14], for the
mobile moving at 30m/s (≈ 67.5 miles/h), the incidence
angle changes at the rate of 4.2°/s (with respect to a base
station 3km away).  Consequently, learning the fast fading
channel  using just the observation samples is not sufficient.

Finally, the additive noise and decision-directed
tracking  (e) result in poor prediction accuracy.  In this paper,
Least Mean Squares (LMS) adaptive tracking method is
employed in conjunction with the channel inversion
algorithm to mitigate the channel mismatch and to improve
prediction accuracy.  When channel inversion is employed at
transmitter, and the predicted channel power is above the
specified threshold, the new modified discrete-time received
signal is given by:

yk  = ak bk + zk, (6)

where the prediction accuracy factor ak  = 
ck

c^ k
. When the

prediction gets better, the value of ak approaches 1. We use
the LMS adaptive algorithm to track the variation of the
factor ak at the data rate at the receiver as:

a~ k+1 = a~ k + µekb
^

k
*, (7)

where µ is the step-size controlling the convergence rate, b^ k is
the decision of bk, and error signal ek is defined as: 

ek  = yk - y
~

k = yk - a
~

kb
^

 k  (8)
Adaptive tracking of ak is beneficial when noise is non-
negligible and/or decision-directed operation  is desired.
Since variation of ak is not significant, the convergence is
better  than for  channels without inversion.  The estimate a~ k

is used for coherent detection.   In addition, the updated factor
a~ n is sent back to transmitter at the low sampling rate and
used to update previously predicted fading channel coefficient
c^ n as
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(a) Prediction error for noise-free channel.
dotted: predicted using past actual values;
dash-dotted: using previously predicted values.
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(b) Prediction error for the channel inversion method
(threshold=0.1, snr=15dB).

dash-dotted: predicted using noisy low rate samples;
dotted: predicted with adaptation of ak only.   

Figure 2. Prediction error reduction using adaptive prediction
and tracking. Prediction error for the nine-oscillator model
during the prediction interval is shown.
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c~ n = a~ nc
^

n, (9)
When the estimates c~ n-j are used in (3) to predict future
samples, the prediction accuracy  is maintained even in the
presence of additive noise as illustrated in Figure 2b, where
the performance of this adaptive approach is compared with
prediction  using the estimates of cn-j obtained from noisy
received samples (6) as yn-jc

^
n-j at the same low sampling rate

(it is assumed that bn-j=1).  The performance of the adaptive
approach is almost the same as using actual noise-free values
in the prediction (Fig. 2a). In Fig. 2, the range of prediction
is one symbol (50 data bits).  In practice, a greater prediction
range might be desired, and previously predicted c^ n-j might
have to be used in (3) for a few recent samples, but this does
not significantly increase the propagation  error.

In addition to the error propagation problem, short
observation interval and the time-variant channel model also
significantly affect the prediction accuracy.  These factors are

mainly reflected in the LP coefficients dj in (3).  The LMS
algorithm for updating model parameters is:

  d(  n+1) =   d(n) +ηen   c  
~

n
* (10)

where η is the step-size,  d (n)=(d1(n), ...dp(n)) is the time-
dependent vector of channel model parameters (see (3)),  c ~(n)
= ( c~ n-1, ..., c~ n-p ) is the vector of updated channel estimates,
and the error signal,

en = c~ n - c
^

n. (11)
The improvement in prediction accuracy using joint

adaptive tracking of ak�s and dj�s is illustrated in Figure 3 for
the channel with parameter variation and high SNR.
Simulation results show that the predicted values using
adaptive tracking method follow very closely the actual
channel envelope.  Again, in practice, the parameters dj could
be updated with a delay of several samples without
significantly degrading performance.

In this section, we assumed that the decision b^  k  was
given by the actual data bk, the threshold was chosen as 0.1,
and while the power of the predicted coefficient was below
the threshold, the parameters dj were not updated. The
observation interval was 100 samples, and the order p=60.
We are currently investigating adaptive prediction and
tracking for lower SNR values, different thresholds, shorter
observation intervals and orders p [12]. Our results suggest
that prediction for a wide range of parameters is feasible.  We
are also able to predict accurately even if the number of
scatterers is very large.  In addition, we are applying this
algorithm to realistic datasets obtained by the method of
images [4, 15] and systems with diversity [16].

4. PERFORMANCE ANALYSIS OF THE CHANNEL INVERSION
WITH THRESHOLD ALGORITHM

In the bit error rate (BER) simulations, we assumed
coherent detection and used Binary Phase Shift Keying
(BPSK) modulation scheme. Given binary signal bk and

E(|ck|
2) = 1, the signal-to-noise (SNR) is γ b = 

E(bk
2)

N0
. The

BER for the conventional detector and the channel inversion
with threshold method for the nine-oscillator model without
channel parameter variation are plotted in Figure 4. The
predicted values used for simulation results in this figure
correspond to the dotted line in Figure 2a.  The theoretical
results are obtained as follows.  Without transmitter pre-
compensation, the channel is closely approximated by the

Rayleigh fading channel with the BER Pe = 
1
2





1-
γ b

1+γb
 

[6]. When channel inversion is applied, the power of the

transmitted signal is multiplied by 
1

|c^ k|
2.  In the analysis, we

assume perfect prediction, and use Rayleigh distribution to
model the predicted amplitudes.  When no threshold is used,
the infinite power boost is introduced at the transmitter.  On
the other hand, given the threshold ρ>0, the average
transmitted power is

E



1

|c^ k|
2 | 1

|c^ k|
2 < 

1
ρ

 = 
1
e-ρ Γinc(0,ρ),

where Γinc is the incomplete gamma function defined as
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(a) Solid: actual channel samples; dash-dotted: predicted with
adaptive tracking;  dashed: predicted using actual past
samples with fixed parameters dj; dotted: no adaptation
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Figure 3. Comparison of prediction accuracy for the nine-
oscillator model with the incidence angle variation of 4.2°°°°/s.
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Γinc(0,ρ) = ⌡⌠

0

1/ρ

e-1/x/xdx.
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Figure 4. Probability of bit error vs SNR for Rayleigh fading
channel with no threshold and no compensation at the
transmitter (o____o); channel inversion with prediction for
thresholds 0.1 (*- - -*), 0.2 (+- - -+), 0.4 (o- - -o) (also Gaussian
channel BER), and 0.6 (x- - -x). Channel inversion (thr. 0.1) for
feedback without prediction (◊◊◊◊- - -◊◊◊◊). The dashed lines are the
simulations and the solid lines are the theoretical results for
the each threshold level.

By increasing the threshold from 0.1 to 0.6, we observe
performance improvement. However, the throughput reduces
with the increasing thresholds (or equivalently, the
bandwidth increases). The throughputs are calculated for a

given ρ as Pr(|c^ k|
2>ρ) = ⌡⌠

ρ

∞
e-ydy = e-ρ and confirmed by the

simulations. For example, the throughputs are 90.5%, 82%,
67%, and 55% for the thresholds 0.1, 0.2, 0.4, and 0.6,
respectively. The simulation results slightly deviate from the
theoretical values due to the prediction and the interpolation
errors. However, the agreement with the theoretical results is
very good, despite the fact that Rayleigh fading and perfect
prediction is assumed in power calculations, while the actual
channel has only 9 oscillators. Since the power of the

transmitted signal 
bk

c^ k
 is greater than E(bk

2) for thresholds

<0.4, the BERs for these threshold values are above the
AWGN channel BER. For the threshold=0.4, the transmitted
power is equal to E(bk

2), and the analytical curve in this case
is also the BER of the AWGN channel [9]

Pe = Q( 2γb), where the Q(x) = 
1

2π
 ⌡⌠

x

∞
 exp(-t2/2)dt.

Moreover, for thresholds greater than 0.4, the BER is lower
than for the AWGN channel.  This is due to the fact that for
these thresholds the most favorable channel conditions are
chosen for transmission, i.e., the data is sent only when the
channel is strong. Thus, by using the proposed prediction

method, we were able to reduce the BER to and beyond the
level of the AWGN channel.

In Figure 4, performance of the channel inversion
algorithm for threshold level 0.1 is also shown for the case
when the channel coefficient cn is fed back to the transmitter
as the same sampling rate (500Hz) and used as an estimate of
the channel coefficient ck (at the data rate) between the
samples cn and cn+1.  This estimate is used to adjust the power
for all data points on the interval [n, n+1]. This method was
simulated for other thresholds, and the degradation relative to
the results with prediction is similar to the case shown.  Note
that the performance of the feedback without prediction
method is optimistic, since the delay is assumed to be zero.
This result illustrates the importance of long range prediction
for reliable performance of adaptive modulation and coding
techniques.

5. CONCLUSION AND FUTURE WORK
We discussed a novel fading prediction method, and

the advantages of using low sampling rate to achieve long
term prediction. Adaptive prediction and tracking technique
is also presented for reducing the error propagation and
channel mismatch. The performance of the channel inversion
with threshold method that utilizes the proposed prediction
algorithm is analyzed. It is shown that the performance for
the flat fading channels can be significantly improved when
prediction is used. The extension of the proposed method to
multipath fading channels, antenna array systems, and
adaptive modulation and coding are under investigation.
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