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Abstract � Long range prediction capability for fading
channels would provide enabling technology for accurate
power control, reliable transmitter and/or receiver diversity,
more effective adaptive modulation and coding and
improvements in many other components of wireless systems.
In order to achieve accurate long range prediction, the authors
recently introduced a novel algorithm that finds the linear
Minimum Mean Squared Error (MMSE) estimate of the future
fading coefficient given a fixed number of previous
observations. In this paper, we show that the superior
performance of this algorithm is due to its lower sampling rate
relative to the conventional (data rate) methods of fading
estimation.  We present the theoretical analysis of the MMSE
of long range prediction as a function of several parameters:
the number of scatterers, model order, sampling rate and the
Signal-to-Noise ratio (SNR).  Moreover, we show that the long
range prediction can be further improved by employing
adaptive tracking combined with the truncated channel
inversion algorithm.

1. INTRODUCTION
In wireless communication systems, signal fading due

to multipath severely degrades performance and imposes high
power requirements [1-3]. Since the channel changes rapidly,
the transmitter and receiver are not generally optimized for
current channel conditions, and thus fail to exploit the full
potential of the wireless channel.   Recently, several adaptive
modulation and coding methods were proposed [4-8].  These
techniques improve the bit rate for wireless channels by
varying the transmitted signal according to current channel
conditions.  To realize the potential of adaptive transmission
methods, the channel variations have to be reliably predicted
several frames ahead.  This prediction range is required due to
the delay associated with the feed back of channel state
information from the receiver to the transmitter, as well as
processing delay and constraints on the rate of switching
from one modulation format to another.  In addition, reliable
long-range prediction is necessary for adaptive transmitter
diversity techniques, reliable power control and decision-
directed channel estimation with delayed decisions.
However, most current fading estimation techniques are not
suitable for long-range prediction (e.g., [9,10].)

In [11-13], we described a novel long-range prediction
algorithm that characterizes the channel as an autoregressive
model (AR) with low sampling rate, and computes the
MMSE estimate of the future fading coefficient sample based
on a number of past observations.  This algorithm can
reliably predict future fading coefficients far beyond the
coherence time for a flat fading channel with an arbitrary
number of scatterers.  The superior performance of this

algorithm relative to conventional methods is due to its
much lower sampling rate (on the order of twice the Doppler
shift).  For conventional techniques, the sampling rate is
usually given by the date rate.  The lower rate utilizes the
large sidelobes of the autocorrelation function of the fading
process, permitting prediction further into the future.  In this
paper, we analyze the potential of long-range prediction for
fading channels and the performance of the algorithm
proposed in [11-13].  We investigate the effect of the
sampling rate, filter length, the number of scatterers and the
SNR on the MMSE of long range prediction.  We also
discuss prediction in the presence of additive noise, and
evaluate performance of prediction aided by adaptive tracking.
It is shown that the potential of long range prediction for
fading channels can be realized using properly chosen system
parameters and adaptive tracking techniques.

2. LONG RANGE PREDICTION OF THE FADING CHANNEL
In this work, we concentrate on flat fading signals

which result from interference between several coherent
scattered components.  The fading coefficient at the receiver
is given by the sum of N Doppler shifted signals [1]

c(t) = ∑
n=1

N
 An e j(2πfnt+φn) (1)

where (for the nth scatterer) An is the amplitude, fn is the
Doppler frequency, and φn is the phase.  Due to multiple
scatterers, the fading signal varies rapidly for large vehicle
speeds and undergoes "deep fades".  Our approach to
prediction of future fading conditions is based on the fact that
the parameters An, fn and φn vary much slower than the actual
fading coefficient c(t).

Consider a binary phase shift keying (BPSK) discrete-
time system model at the output of the matched filter and
sampler:

yk = ck bk + zk (2)
where ck is the fading signal c(t) sampled at the symbol rate,
E(|ck|

2)=1, bk is the data sequence (bk ∈ {+1,−1}), and zk is
the discrete complex AWGN process with variance N0/2.
Even for a modest number of scatterers, c(t) and ck can be
accurately modeled as correlated complex Gaussian random
processes with Rayleigh distributed amplitudes and uniform
phases [1-3], where the accuracy increases as N in (1) grows.
This process is usually assumed to be stationary for purposes
of describing short-term fading.  However, the stationary
Rayleigh fading process description does not reflect the
variation of parameters associated with individual scatterers
[14,15].  Similarly, in the popular deterministic Jakes model
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[1], the amplitudes, frequencies and phases associated with
the scatterers are fixed for the duration of the data frame.  In
[14,15] we show that the rate of parameter variation affects
the accuracy of long range prediction.  Therefore, it is
important to take the time-variant nature of the channel into
account in the analysis of this prediction method.  However,
in this paper, we use conventional stationary models to
obtain computationally tractable estimates on the MMSE of
long range prediction.

Our linear prediction (LP) method is based on the AR
channel modeling [11].  We form the linear MMSE
prediction of the future channel sample c^ n based on p
previously observed channel samples cn-1...cn-p:

c^ n = ∑
j=1

p
 djcn-j (3)

where dj's are the coefficients of the LP filter.  Note that the
samples have to be taken at least at the Nyquist rate given by
twice the maximum Doppler frequency fdm [1,2].  The
sampling rate we choose is close to this Nyquist rate and
therefore is much lower than the data rate in (2). The
predicted samples are interpolated to forecast the fading
signal at the data rate [11-13].  To date, most investigations
of fading channel modeling and estimation assume sampling
at the data rate (e.g., [9,10]).  The low rate sampling is
employed in pilot-symbol assisted techniques [16], although,
to the extent our knowledge, it has not been applied for
prediction prior to our work.  Below, we show that the lower
rate sampling results in much greater prediction accuracy
when the filter length p in (3) is fixed, and evaluate the
prediction MMSE as a function of prediction range, model
order p and SNR for different sampling rates.

We start with the case when N in (1) is infinite
(Rayleigh fading).  The channel is modeled as the complex
stationary Gaussian process with the autocorrelation function

r(τ) = J0(2πfdmτ) (4)
where J0(.) is the zero-order Bessel function of the first kind
[1].  The plot of this function is shown in Figure 1. For
illustration, let us fix the maximum Doppler frequency at
100Hz.  Then the low sampling rate of 500Hz would
correspond to 5 samples/unit of the x-axis of Fig. 1, whereas
the data rate of 25KHz results in 250 samples/unit.  When the

model order p in (3) is fixed, the observation samples taken at
the low sampling rate span much larger time interval than the
samples at the data rate.  This translates into exploitation of
the sidelobes of the autocorrelation function in the prediction
[17] and lower MMSE when low rate sampling is employed.

This observation can be quantified by considering a
general channel prediction problem.  For a given sampling
rate 1/ Ts, the objective is to find the LP filter coefficients dj

which minimize the MSE, E[|e(τ)|2]=E[|c(τ) - c^ (τ)|2], where τ
is a prediction range, and c^ τ is an estimate of the future
channel coefficient c(τ) given by the linear combination of p
past samples c-j=c(-jTs) (0 is the reference time, so the
observations are taken for t ≤ 0):

c^ (τ) = ∑
j=0

p-1
 djc-j (5)

Note that equation (3) applies prediction one sample ahead,
whereas in (5) we compute the predicted value of the future
sample separated from the observations by τ seconds. Thus,
the coefficients dj are not the same in (3) and (5) unless τ is
the sampling interval.  The optimal coefficients dj are
computed as

  d   =   R  -1 r (6)
where    d   = (d0 ··· dp-1).    R   is the autocorrelation matrix (p×p)
with coefficients Rij = E[c-i c

*
-j] and   r   is the autocorrelation

vector (p×1) with coefficients  rj = E[c(τ) c*
-j]. Note that

when noisy observation are used in (5) (e.g. as in (2) with
bk=1), the effect of the noise is incorporated into    R    by adding
(N0/2)  I   where   I   is the p×p identity matrix, and rj is modified
to include noisy observations.  The resulting minimum MSE
is given by

E[|e(τ)|2] = 1 - ∑
j=0

p-1
 djr(τ+jTs) (7)

where r(τ)= E[c(t)c*(t+τ)] (see eq.(4) and Figure 1).
The MMSE performance of the long range prediction

with various sampling rates is compared in Figure 2. A
moderate model order, p=20, and a very high SNR = 140dB
are chosen to illustrate the performance comparison,
although, later, the results will be generalized for any p and
SNR values.  In this figure, the theoretical MMSE curves (7)
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for a given prediction range are plotted. For example,
assuming fdm=100 Hz, the range of 0.2 on the x-axis
corresponds to 50 data points ahead with the data rate of 25
kHz and 1 sampling point ahead with a lower sampling rate
of 500 Hz. As seen from the figure, the same future value can
be predicted with much greater accuracy by using the low
sampling rates. Thus, when the sampling rate is reduced
greatly relative to the data rate, but the filter length p remains
the same, prediction much further ahead becomes feasible.

The effect of the sampling rate is explored further in
Figure 3. In this figure, the MMSE vs fs is plotted for
various model orders, p, at the prediction range, fdmτ=0.4. As
seen from the figure, for each model order there is an optimal
low sampling rate that minimizes the MMSE.  This optimal
rate is close to 1KHz for moderate to high p.  These results
are obtained for an infinite number of scatterers, N.  In this
case, the lower sampling rate of 500 Hz is not the optimum
rate. However, as we will see later in this paper, in the
important practical case when the number of effective
scatterers is modest [14,15], the MMSE decreases with the
sampling rate for a fixed p, and the sampling rate of 500 Hz
gives the best performance among the rates examined in
Figure 3.  Hence, we use fs=500 Hz as a low sampling rate
below to illustrate the performance of the MMSE with
respect to SNR and p.  In Figure 4, we demonstrate our
MMSE results for different SNR values at the data rate of 25
KHz and at the low sampling rate of 500 Hz.  Since the
prediction range, fdmτ = 0.4 is chosen for these curves, for the
data rate of 25 KHz, 100 bits ahead are predicted.  This range
also corresponds to 2 low rate samples ahead.  Since the
sampling rate of 500 Hz is not the optimal rate for Rayleigh
fading, for some values of SNR and p, high data rate might
perform better. However, most of the time, the performance
of the lower sampling rate is better than that of the high
sampling rate. For lower sampling rates, we observe the
saturation of the MMSE as the SNR increases. This MMSE
floor can be found from (7) for a given value of p by setting
N0=0.  

In Figure 5, the MMSE vs p is plotted in solid lines
for fdmτ = 0.2 and the sampling rate of 5fdm, for different
values of SNR.  As p increases the MMSE saturation level is
approached.  This MMSE floor corresponds to the prediction
error given an infinite number of past observations for the

fading process sampled at 5fdm in the presence of noise. The
closed form expression for this prediction error is given by

MMSE=exp[ 
1

2π
  ⌡⌠-π

π  log
N0

Px(w)+ N0

dw] (8)

where Px(w) is the folded power spectrum of the channel [2].
Given desired prediction range τ, the MMSE solution

is found by solving for the filter taps in (6).  However, in
practice, this approach might be computationally expensive if
several future samples have to be predicted at once.  Instead,
we use the one-step prediction at a given sampling rate (as in
(3)) and then iterate equation (3) to predict more then one
sample ahead by using previously predicted samples or their
estimates when the observations are not available.
Obviously, the MSE of this iterative prediction technique is
lower bounded by (7).

So far, we investigated the case of the infinite number
of scatterers in creating the Rayleigh fading environment. In
Figure 6, the theoretical autocorrelation functions are plotted
for the infinite number of oscillators, as well as for N=3 and
9. For the infinite number of oscillators, the autocorrelation
function is given by (4), whereas for finite N, the
autocorrelation function is found as [1]:

r(τ) = 
4
Na

 ∑
n=1

N-1
cos (2πfdmτcos

2πn
Na

 ) + 
2
Na

 cos(2πfdmτ) (9)

where Na= 4N-2. Note that the autocorrelation values for the
finite values of N initially approximate the autocorrelation
values of the Rayleigh fading.  For large fdmτ, the
autocorrelation functions diverge, and for finite N much
larger sidelobes are present.  These larger sidelobes help to
reduce the MMSE as illustrated in Figure 7.  In this Figure,
the solid lines represent the MMSE curves using the
theoretical autocorrelation functions for different N values.
These theoretical MMSE values are closely approximated as
the observation interval used to calculate the empirical
autocorrelation values (and the resulting linear predictor
coefficients) increases.  Figure 7 depicts these simulation
results for different number of oscillators and observation
intervals.  We have found that adaptive techniques can
significantly improve prediction accuracy shown in Figure 7
for short observation intervals.  The MMSE values in Figure
7 are high due to large additive noise in the observation.  The
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effect of the noise can be greatly reduced by using adaptive
processing as shown in Section 3.

We mentioned earlier that the low sampling rate of
500 Hz (assuming fdm=100Hz) does not result in the best
performance for the infinite number of oscillators. However,
when the number of oscillators is modest [14,15], the
sampling rate of 500 Hz results in the smallest MMSE
among the rates considered in Figure 8. We limit ourselves
to lowest sampling rate of 500 Hz although we could
decrease the sampling rate to the Nyquist rate of 200 Hz that
is twice the maximum Doppler frequency.  In practice,
interpolation [11-13] and adaptive tracking accuracy [14,15]
benefit from a higher sampling rate.  These considerations
need to be taken into account in selecting the optimal
sampling rate.

Both Figures 7 and 8 illustrate the fact that the
advantages of using longer memory in the prediction are
more pronounced for smaller values of N.  For a given model
order p and sampling rate, the total memory span is given by
p/fs. For a fixed p, lower fs implies longer memory. Thus, as
fs  decreases, greater utilization of the sidelobes of the
autocorrelation function becomes possible.  Since the
sidelobes are larger for smaller values of N, lower MMSE
results when fs is low and p is sufficiently large as N
decreases.  On the other hand, as fs increases for fixed p, the
prediction MMSE for any N converges to the MMSE of the
Rayleigh fading.  This is due to the reduction of the memory
span of the prediction to the region where the autocorrelation
functions are similar for all N (Fig. 6).  Similarly, for low
model order p, the advantage in the MMSE due to the lower
number of oscillators diminishes.  When short range
prediction or channel estimation is the objective, short
memory span is sufficient to generate reliable estimates
[9,10].  Thus, the MMSE in this case is not sensitive to the
number of oscillators.

3. PREDICTION IMPROVEMENT THROUGH ADAPTATION
In section 2, it was shown that long range channel

prediction benefits from choosing lower sampling rate fs

given model order p.  When received samples are corrupted
by noise, prediction accuracy greatly decreases (see Figures
4,5 and 7).  In this case, noisy received signals sampled at

the high data rate (see, e.g. (2)) can be used to reduce the
noise effect in the prediction, even if lower sampling rate is
employed in the autoregressive filter.  As new received
signals yk (2) become available, we utilize them to update
previously predicted channel values c^ n and model coefficients
dj.  This update results in improved future predictions.  Here
we discuss and compare three approaches to using received
signal to improve prediction accuracy.  In the following
discussion, we assume that the sampling rate fs is 500 Hz,
the data rate is 25 Kbits/second and fdm=100Hz.  Thus, there
are 49 data bits between the two adjacent  low rate samples.
Since we often refer to two different rates in this paper, we
use the index k for the samples at the data rate, and index n
for the lower sampling rate throughout.  We utilize channel
inversion with threshold ρ [7,8,13,17], and assume the
average transmitter power is normalized to 1.  When the
predicted channel coefficient c^ k is above the threshold ρ, the
received signal is given by:

yk  = β
ck

c^ k
 bk + zk (10)

where the factor β = 
1

E



1

|c^ k|
2 | 

1
|c^ k|

2 < 
1
ρ

 is introduced here

for consistence in SNR calculation [7]. The prediction
accuracy factor is defined as

ak  = 
ck

c^ k
 (11)

and the average SNR at the receiver is γ�  = 
β2

N0
 .  In defining

the SNR, it is assumed that E[bk
2]=1 and ak=1.  In the

numerical results below we assume the threshold ρ = 0.1.
Initially, suppose bk is known.  Given bk=1, the noisy

estimates of channel coefficients at the data rate can be
obtained from equation (10) as:

c'k = 
yk

β
 c^ k = ck + 

c^ k

β
 zk (12)

The SNR of these noisy samples is γ� .  Similarly, the noisy
channel samples at the lower sampling rate are given by:

c'n = 
yn

β
 c^ n = cn + 

c^ n

β
 zn (13)

0 1 2 3 4 5 6 7 8 9
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A
ut

oc
or

re
la

tio
n,

 r
(τ

)

Time Delay, f
dm

 τ

Figure 6. Theoretical autocorrelation functions for the infinite
number of oscillators (Rayleigh fading) (solid line) and for a
finite number of oscillators, N=3 (+ - - - +) and N=9 (o - - - o).

0 10 20 30 40 50 60 70 80 90 100
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Model order, p

M
M

S
E

SNR = 20 dB

SNR = 40 dB

SNR = 60 dB

SNR = 80 dB

SNR = 100 dB

SNR = 120 dB

SNR = 140 dB

Figure 5. MMSE vs. model order, p, for different values of SNR
for the sampling rate of 500 Hz, ττττ    = 2ms, fdm=100Hz.
Solid lines: optimal approach; Dotted lines: adaptive tracking
of linear prediction coefficients.



5

and the SNR of c'n is still γ� .  Now, we describe the
following three approaches to using c'k, ak and c'n,
respectively, in the channel prediction.
(1)Wiener filtering.  For this ideal case, assume that the
autocorrelation function of the fading channel is known.
Then the MMSE estimate of the channel coefficient cn (at the
lower sampling rate) using Wiener filtering based on 50
previous noisy samples c'k from (12) (at the data rate) results
in the minimum mean squared estimation error ξmin.  (We use
the autocorrelation function (4) to compute ξmin).  This error
can be viewed as the variance of the effective noise added to
the actual channel sample to obtain the estimate.  Then, the
effective SNR for the estimated channel samples is given by
E[|cn|

2 | |cn|
2 > ρ]/2ξmin =(1+ρ)/2ξmin.  This effective SNR is

shown by solid curve in Fig. 9 and can be viewed as an
upper bound on the SNR enhancement in the low rate
samples using received signal sampled at the data rate.
(2) Adaptive tracking of factor ak.  The factor ak (11) can be
adaptively updated at the data rate [17] using, e.g. Least
Mean Squares (LMS) algorithm:

a~ k+1 = a~ k + µekb
^

k
* (14)

where µ is the step-size controlling the convergence rate.  In
this paper, µ is fixed at 0.1.  Further prediction performance
improvement can be obtained by choosing the optimal µ for
each SNR value.  The algorithm is decision-directed: b^ k is
the decision of bk, but in this paper we assume perfect
detection and set  b^ k=bk.  The error signal ek is defined as: ek

= yk - y
~

k = yk - βa~ kb
^

 k.  Note that error signal ek approaches
the value of the additive noise zk when the factor a~ k is close
to the actual ak.  Since the value of µ is small, the effect of
noise zk in tracking the factor ak is not significant and the
procedure of adaptive tracking of the factor ak can be viewed
as noise filtering (of course it is also useful for coherent
detection of the data).  The updated factor a~ k is sent back to
transmitter at the lower sampling rate and used to update
previously predicted fading channel coefficient c^ n as c~ n = a~ nc

^
n.

This updated coefficient is used in the AR filtering to
improve future predictions.

The effective SNR for c~ n is examined through
simulation.  We use the number of scatterers N=9, the
observation interval of 100 samples, very low noise during
the intitial observation  interval, and model order p=60.  The
prediction range is 2ms, and the SNR is computed using 50
low rate samples following the initial observation interval.
Here we just consider the updated channel coefficient c~ n in the
calculation of SNR, corresponding to the part of the channel
above the threshold.  The SNR is shown as dotted line
(circles) in Figure 9 and the corresponding prediction MSE is
shown in Figure 10.  The performance of this method is very
good for low-to-moderate SNR, but the effective SNR and
the MMSE saturate for high SNR.  In practice, one will have
to take into account the effect of interrupted transmission
(when the channel power is below the threshold) on the
performance of the adaptive algorithm and the issues
associated with the decision-directed tracking (e.g., phase
ambiguity, propagation error, etc).
(3) Prediction using noisy samples.  The third approach is to
use the estimate of c'n (13) from the noisy received signal.

The ideal SNR for this approach is given by γ�  = 
β2

N0
  and is

shown for reference as the solid line(stars) in Figure 9.  The
measured SNR (from simulations) is lower due to prediction
error and is shown as the dotted line (stars) in the same
figure.  This approach gives poor prediction performance for
moderate SNR, and the performance degrades significantly
when the SNR is less than 10 dB due to the noise
enhancement resulting from unacceptable prediction. The
comparison of the MSE for the second and third methods is
shown in Figure 10.  

In this paper, we assumed that parameters associated
with the scatterers in equation (3) (the number N, the Doppler
frequency shifts fn, the amplitudes An and the phases φn) are
constant during a data block.  These parameters determine the
choice of the LP coefficients dj.  In general, the constant
parameter assumption is not strictly true [14,15] and causes
parameter mismatch when fixed LP coefficients are used
during the transmission interval.  In addition, the short
observation interval and the additive noise results in
suboptimal dj and significantly affect prediction accuracy.
Adaptive update of model parameters using the LMS
algorithm was proposed in [17].  Consider the following
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equation of the adaptive update of the LP coefficients (at the
low rate):

  d(  n+1) =   d(  n) +ηen   c  n
* (15)

where η is the step-size,   d  (n)=(d1(n), ...dp(n)) is the time-
dependent vector of channel model parameters (see (3)),  c (n)
= ( cn-1, ..., cn-p ) is the vector of observed channel samples
and en = cn - c

^
n.  Since we are interested in the MMSE of this

method as a function of the SNR, we modify the definition
of   c  (n) in (15) to represent noisy observations  (as yn in (2)
with bk=1).  Joint adaptive tracking of dj and the prediction
accuracy factor ak in the channel inversion with threshold
algorithm (or another noise reduction method) could reduce
the effect of the noise significantly.  However, we use noisy
samples here for consistency with the theoretical results in
Section 2.  The steady-state MMSE Jada of linear prediction
through adaptive tracking dj is given by [18]:

Jada = Jmin + 
1
2
 ηJminp(1+

1
2

 N0) (16)

where Jmin is the optimal MMSE of linear prediction given
model order p calculated according to equation (7) assuming
the autocorrelation function (4).  The Jada versus model order
p for different SNR and η=0.015 (which was also used in
[17]) is illustrated in Figure 5 (dotted lines).  Simulation
results in [15, 17] show that predicted values using adaptive
tracking follow very closely the actual channel envelope for
typical fading conditions.  Also, our results show that greater
prediction range than used in the simulations of this section
can be afforded without significantly degrading performance.

 4. CONCLUSION AND FUTURE WORK
We discussed the advantages of using low sampling

rate to achieve long range prediction and the benefits of
combining prediction with adaptive tracking.  Current and
future work in this area focuses on practical issues associated
with adaptive tracking for realistic channel models and
measured data [14,15], prediction for multipath fading
channels and antenna diversity systems [15,19], adaptive
modulation and coding aided by long range prediction and
channel estimation and equalization combined with the
proposed prediction algorithm.
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Figure 10.  MSE performance comparison: o��o:  adaptive
tracking of factor ak;  *��*: using noisy samples.
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Figure 9. Effective SNR comparison for different prediction
approaches.  o------o:  Wiener filtering; o��o:  adaptive
tracking of factor ak;  *------*:  ideal SNR using noisy samples;
*��*:  measured SNR using noisy samples; prediction range
of 2 ms, fdm=100Hz.
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