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Abstract

Algorithms [1 - 7] that predict the wireless channel for up to a few wavelengths
cannot be adequately tested with stationary models, such as the Jakes model [8].  Moreover,
ray-tracing or finite difference time domain (FDTD) methods do not provide insights into
the relationship between the reflector configurations and the performance of the long-range
prediction.  A novel model is required to: (1) create non-stationary datasets to test our
previously proposed adaptive long range prediction algorithm, which enables practical
realization of adaptive transmission techniques, including modulation, adaptive coding,
power control, sentient transmitter diversity, etc.  (2) provide limits on the speed of
adaptation needed for an algorithm to predict the channel significantly into the future, and
thereby reveal the timing of future deep fades, etc. (3) classify the reflector geometries that
will have the typical or the most severe parameter variations, so that the reflector
configurations for test datasets can be appropriately chosen and (4) illuminate the origins of
the temporal and statistical properties of measured data.  We present a model that satisfies
these criteria.  It provides insights and test data for fading over relatively small spatial
regions, as required for prediction.  Therefore, it does not incorporate significant long-range
fading or diffusive propagation (although it does utilize diffraction and can handle
shadowing).  It could be incorporated into the later stages of a long-range propagation
model.  We validate the performance of our adaptive prediction algorithm using channels
given by the physical model or actual measured data.  The performance is similar for both
types of channel, and different from the performance when the channel is given by the Jakes
model.  Moreover, we demonstrate improvement of prediction performance when recursive
least squares (RLS) adaptive tracking of the model coefficients is utilized, and show that
when prediction is employed with adaptive power control, the accuracy depends on the
scattering environment.

I. Introduction
The tremendous growth in demand for wireless communications capacity has

created a need for new modulation, coding and detection methods that more efficiently use
the multipath fading channels encountered in mobile radio.  Since the channel changes
rapidly, the transmitter and receiver are not usually optimized for current channel conditions,
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and thus fail to exploit the full potential of the wireless channel. Recently, several new
adaptive transmission techniques [2,11], such as adaptive modulation and adaptive channel
coding, adaptive power control, and adaptive transmitter antenna diversity, have been
investigated by many researchers.  By taking advantage of the time-varying nature of the
wireless fading channel, all these adaptive schemes are trying to use both power and
spectrum more efficiently to realize the higher bit rate transmission without sacrificing the
Bit Error Rate (BER) performance.  To implement these adaptive transmission methods in
practice, channel state information (CSI) for a future block from tens to hundreds of data
symbols long must be available at the transmitter due to feedback delay and other
constraints [2].  At realistic mobile speeds, even a small delay will cause a significant
degradation of performance, since channel variation for high Doppler shifts usually results
in a different received power at the time of transmission than at the time of channel
estimation.  Therefore, to realize the potential of adaptive transmission methods, the channel
variations have to be reliably predicted at least several milliseconds ahead.  Recently, we
investigated a novel adaptive long-range fading channel prediction algorithm [1 - 7].  This
method can forecast the wireless channels well beyond the coherence time, and provides
enabling technology for adaptive transmission (also, see [2] for a literature review of recent
advances in fading channel prediction.)  In [2, 4 � 6, 12], we combined channel prediction
with the truncated channel inversion (TCI) power control method [11].  In [10, 14], joint
adaptive variable rate Multilevel Quadrature Amplitude Modulation (MQAM) [11] with
channel prediction was addressed.  Combined long-range power prediction and
Transmission antenna diversity for Wideband Code Division Multiple Access (WCDMA)
was studied in [13, 15, 16].  In this paper, we give physical insights into the nature of the
deterministic modeling of the flat fading channel, and verify that this model will generate
realistic fading datasets to test both our prediction algorithm and its application in adaptive
transmission schemes.  

II. The Physical Model
A well-known statistical model that characterizes a flat fading channel is Rayleigh

fading, in which the fading coefficients are modeled as complex Gaussian random variables
[8, 9].  The deterministic Jakes model [8] is used as a standard model in computer
simulations. Jakes model with a relatively small number of sinusoids (less than nine) can
generate a Doppler spectrum that accurately approximates that of the theoretical Rayleigh
fading channel.  However, neither this stationary model nor the depiction as a stationary
Rayleigh random process captures the variation of channel parameters associated with each
reflected wave (amplitudes, frequencies and phases).  The performance of the long-range
prediction algorithm [2] depends on the time-varying parameters associated with the
important reflectors -- their relative phases, frequency (direction), amplitudes and number [1,
3, 7].  The rate of change of these parameters significantly affects prediction accuracy [1, 2,
10, 12].  Thus, to test the long-range prediction algorithm and its application in adaptive
transmission systems for realistic mobile radio channels, non-stationary data sets are
necessary.  We use such datasets, created with our physical model or measured in the field,



to test such an algorithm.
Similar performance (that
differs from the performance
on Jakes model datasets) is
obtained for both cases [1, 2,
6].

The physical model
used is based upon the
method of images combined
with diffraction theory.  An
aperture in the object plane
defines the size, large or small,
of an object, and acts as a
source of diffraction.  The
placement of the effective
(image) source is determined
by the object curvature.  The
amplitude of each effective

source is given by the reflectivity times a factor that is required to obtain the intensity of the
source at the center of the reflector's aperture.  Complex objects can be represented as
several flat or curved objects with adjacent apertures.  The Fresnel diffraction formalism
with point-illumination [17] is used to calculate the field for each reflector in the region of
interest.  The interference pattern c (coherent sum of the complex electric fields Ej of
wavelength λ) generated by N plane-wave reflectors with amplitude Aj, (Doppler) frequency
fj and phase ψj, and time averaged over an optical cycle, can be written as:
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All variables refer to the j-th reflector.  The parameters and position vectors rscatt j, reffscatt j,
rptatj, x1j, x2j and rj = |rptat - reffscatt|j are defined in Figure 1.  The reflector at (rscatt)j has
reflectivity ℜj, and incident power from the transmitter (Ein)j.  The phase factor, e-2πi~r/λ+iφ,

contains the propagation term proportional to ~r j = |rptat - rscatt|j + |rtransmitter - rscatt|j and the
phase from the reflection process, φj, which could be calculated with the Fresnel formulae,
[17], but we treat as a constant.  It depends upon the details of the object such as its
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Figure 1. The parameters used to calculate the amplitude
from one reflecting object, shown as a dotted rectangle.
Also shown is the aperture chosen.  The origin is arbitrary
since only differences between the vectors are used.



complex index of refraction, and tends to
slightly compress or expand the pattern, so
its variations have the same effect as small
changes in vehicle speed.  We do not insert
the spatial variation of this contribution to
the phase.  We assume an infinite aperture
in the y-direction so that the Fresnel integral
term for the y direction in square brackets
reduces to 2 .

To create a dataset, the user of the model
specifies the location of the transmitter and
the centers of the apertures for each object.
The orientation of the aperture, object
reflectivity, object curvature, and reflection
phase shift are also specified for each object.
An aperture is specified for the transmitter
so that shadowing can be modeled.  Other
inputs to the modeling program include the
carrier frequency and region of interest
(location, size and number of points for each
of the two dimensions).  The region of
interest may be any rectangular array of
points from a square to a single line in either
direction.  The position of the image source
for a flat reflector, Fig. 2(a), is the location
opposite from the transmitter (across the
aperture plane) on the line perpendicular to
the aperture plane.  This line need not pass
through the aperture.  We assume that the transmitter is much further from the aperture than
the object's radius of curvature, and apply the paraxial approximation to position an image
source for the uniformly curved objects, Fig. 2(b).  The image source is placed at half the
radius of curvature from the aperture plane.  The object is assumed to intersect the aperture
plane at the midpoint of aperture.  The model calculation running on a Macintosh G3
computer takes a few seconds for several thousand points in the region of interest with ~10
reflectors, or a few minutes for ~100,000 points in the region of interest and ~100
reflectors.

The physical model has the advantage of giving significant insights for
determination of typical and challenging-case reflector geometry.  This information is useful
for constructing test datasets for algorithms, because it allows a sentient choice of object
placement.  The insights also can be used to improve siting of base stations, for systems that
use long range prediction.  In these systems, base station position affects not only the
average intensity, which is calculated well by augmented ray tracing models [18], but also
the parameter variation rates, or ease of tracking.  Long range prediction only requires a
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Figure 2. (a) A schematic of reflection from a
flat object.  The specular reflection can be
modeled as emanating from an effective
source, which is the mirror image of the
source with the large object as the mirror. (b)
The curved object�s reflected rays diverge
more quickly, due to the nearby effective
source.



local model of the flat fading, so
even cases for which a weak
diffracted signal serves as the source,
such as a canyon-like street, can be
accurately considered with this
image-source, diffraction-through-
aperture model.

The insights derive from the
simple relation between the field
contribution from each component
and the (effective) point source and
aperture response in the model.  For
a specific example, consider one
large flat and five curved reflecting
objects creating an interference
pattern with the source.  The source
is 105m to the left of the center of
the 10m square region shown in
Figure 3(a).  A large object 10 m to
the right of the region does not run
perpendicular to it, so its effective
source is 130 m to the right of the
region's bottom (think of it as a hill
or building.  Its amplitude reflection
coefficient is 2/3.  The five spherical
reflectors to the right are evenly spaced on a 10 m long line as shown and with effective
sources 1.8 m to the right.  Think of them as five spherical cars parked along the road.  The
interference pattern (route 2) shown in Figure 3(b) is complex with narrow, deep fades
which are ~1/100 the average power.  The Doppler shifts fj in Eqn. 1 are easy to calculate as
a function of position with the image method.  The Doppler frequency is proportional to the
cosine of the angle between the direction of the mobile and the Poynting vector (ray
direction or wave-front normal) of the signal.  The change in angle towards the effective
source, hence Doppler frequency variation rate, is slow (< 18 Hz/second) for the reflection
from the flat object, since the image source is distant.  Conversely, the proximity of the
effective sources for the curved objects causes faster variations.  Route 2 in Figure 3(a)
passes close to the curved objects, so those components of the interference pattern will have
relatively rapid Doppler frequency variations (up to 890 Hz/second).  This variation causes
this route to be a challenging case.  In contrast, the rate of Doppler frequency variation
along route 1 is <200 Hz/second, which is more typical in practice.  The amplitudes, Aj in
Eqn. 1 and as in Fig. 1, also vary more quickly along route 2, due to the 1/r dependence of
Eqn. 1 and diffraction effects.  
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III. Long Range Prediction of Model and Measured Data
The ultimate purpose of the model is to provide a testbed for our long-range

prediction algorithm.  In this section, we show the importance of using our nonstationary
model, and show that the performance of the prediction algorithm is similar for the physical
model 'data' and measured data.  In Figure 4, we show the importance of using a
nonstationary channel model for testing the prediction algorithm.  In all cases, the complex
fading coefficients are predicted using the adaptive long-range prediction jointly with least
mean squares (LMS) tracking [2, 5].  The prediction algorithm uses an autoregressive (AR)
model

c^n = ∑
j=1

p
  dj cn-j , (2)

where c^n is the predicted sample, and cn-j are the observed samples of c(t) in Eqn. (1).  When
the channel is given by the sum of several important reflectors, Eqn. (1), the AR model
coefficients dj in Eqn. (2) that are tracked will be related to the Doppler frequencies
associated with reflectors, whereas the amplitude and phase of each reflector are accounted
for through the use of the prior data in the prediction.  The mean square error vs. prediction
range is shown for the measured data, our physical model, and the Jakes model.  The
measured data were collected by a van along a route in low density urban Stockholm.
During the measurement, the speed of the van varied between 0 and 50 km/h, though mostly
at 30km/h or below.  The frequency of the radio wave was 1877.5 MHz.  The data set
contains 100,000 samples of the flat fading signal sampled at the rate of 1562.5Hz.  The
three (Jakes, physical model, measured) data sets have similarly shaped autocorrelation
functions.  Also shown in Figure 4 are the simulation results of mean square error (MSE)
vs. prediction range for the Jakes model at a lower sampling rate fs=521Hz for the cn in
Eqn. 2.  We found that the prediction of the stationary Jakes model data set can be
improved by using a lower sampling rate [7].  However, the prediction for the non-

stationary measured and modeled data is
not improved, while it still benefits from the
sampling rate that is much lower then the
data rate given fixed model order [2,7].
The significant degradation of the MSE for
two realistic data sets relative to the Jakes
model at shorter prediction lengths is due
to the non-stationarity encountered in
mobile radio channels.  Prediction at the
longer ranges depends strongly on the
number of important reflectors (fixed in
Jakes model, varies for the physical model
and measured data) and their variations.
One expects an improvement in
performance when recursive least squares
(RLS) is used for adaptation rather than
LMS, since it is known to converge faster.
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This should improve convergence to
the correct model and tracking of
parameter variations.  We show in
Figure 5 the improvements one obtains
when using RLS.  Improvements for
both the stationary Jakes model and
nonstationary physical model indicate
that convergence rate is important.  

We compared the BER
performance of the truncated channel
inversion adaptive power control
method (TCI) [4, 11] with long range
prediction between typical and
challenging cases in Figure 6.  Two
thresholds, 0.4 and 0.1, are used for the
TCI as described in [4, 5].  The fading
signals generated along the equivalent
of routes 1 and 2 in Figure 3(a) are
considered as typical and challenging
cases, respectively.  The channel
sampling rate is 1000 Hz and the
Maximum Doppler shift 67 Hz, corresponding to a vehicle speed of 45 miles/h for the
carrier frequency fc = 1GHz.  The data rate is 50 Kbps.  The simulation utilized 2-step (2
ms) ahead prediction.  The performance difference shows that our physical model insights
can help us create different mobile radio environments that both test the limits of our
prediction method and validate its application in adaptive power control, for a range of
environments.

IV. Conclusions
We have given an overview of a physical

model that generates realistic, non-stationary data
for long-range prediction testing, and provides
expectations of the degree of prediction difficulty
for various environments.  This physical model
can be used to gain insights into the interference
patterns that give rise to flat fading in mobile
communications.  It allows calculation of the rate
at which reflected signal powers and frequencies
will vary, and hence the adaptive tracking speed
required to accurately predict future channel
properties.  The parameters vary much more
slowly than the actual channel.  The model can be
used to determine the nature of the environments
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in which measured data were acquired, and can be used to test channel prediction methods.
The channel prediction method tested here performs similarly with both the non-stationary
channel generated by the model and with measured channel data.  The RLS tracking of
model parameters is shown to improve accuracy of the long-range prediction.  The
application of the channel prediction method for adaptive power control algorithm is
validated with our physical model for typical and challenging propagation environments.  
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