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Abstract-Adaptive transmission techniques, such as adaptive 

modulation and coding, adaptive power control, adaptive 
transmitter antenna diversity, etc., generally require precise 
channel estimation and channel state information (CSI) 
feedback.  For fast vehicle speeds, reliable adaptive transmission 
also requires prediction of future CSI since the channel 
conditions are rapidly time-variant.  In this paper, we propose 
to use past channel observations of one carrier to predict future 
CSI and perform adaptive modulation without feedback for 
another correlated carrier.  Statistical model of the prediction 
error that depends on the frequency and time correlation is 
developed and is used in the design of reliable adaptive 
modulation methods.  Significant gains relative to non-adaptive 
techniques are demonstrated for sufficiently correlated channels 
and realistic prediction range. 

1. INTRODUCTION 
High-speed wireless communications require robust 

channel estimation and adaptive transmission to satisfy the 
tremendous growth in demand for capacity.  The idea of 
adaptive transmission [1-4] is to change the transmission 
parameters according to the instantaneous fading channel 
power without sacrificing bit-error rate (BER).  In particular, 
adaptive modulation can provide higher bit rates relative to 
conventional signaling by transmitting at high rate under 
favorable channel conditions, and reducing throughput as the 
channel degrades.  Adaptive modulation depends on accurate 
CSI that can be acquired from different sources.  If the 
communication between the two stations is bi-directional and 
the channel can be considered reciprocal, then each station 
can estimate the channel quality on the basis of the received 
symbols and adapt the parameters to this estimation.  This is 
called open-loop adaptation [5].  If the channel is not 
reciprocal, the receiver has to estimate the channel quality 
from feedback resulting in closed-loop adaptation.  The 
feedback delay, overhead, and processing delay will degrade 
the system performance of the adaptive modulation, 
especially in rapidly time variant fading.  Even in open-loop 
channels, current CSI is not sufficient since future channel 
conditions need to be known to adapt transmission 
parameters.  To realize the potential of adaptive transmission 
methods, the channel variations have to be reliably predicted 
at least several milliseconds ahead.  

Recently, a novel adaptive long-range prediction method 
was proposed in [6-11].  The algorithm employs an 
autoregressive (AR) model to characterize the fading channel 
and computes the minimum mean-square-error (MMSE) 
estimate of a future fading coefficient based on a number of 
past observations.  The advantage of this algorithm relative to 
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conventional methods is due to its low sampling rate (on the 
order of twice the maximum Doppler shift and much lower 
than the data rate), which results in longer memory span for a 
fixed filter length.  This allows to sample large sidelobes of 
the autocorrelation function of the Rayleigh fading channel, 
and thus to predict further into the future. 

In this paper, we extend the long-range prediction 
algorithm into frequency domain.  In particular, we 
concentrate on the scenario where received uplink signal is 
observed at the carrier frequency f 1  and adaptive 
transmission is performed in the downlink signal at the 
carrier frequency f 2  without feedback from the mobile.  
Alternatively, a signal at frequency f 1  can be fed back and 
used to select parameters for adaptive signaling at adjacent 
frequency f 2 .  To accomplish this adaptive transmission 
reliably, the transmitted signal must be sufficiently correlated 
with the observation in both time and frequency.  This 
technique can be applied in correlated uplink and downlink 
channels, in orthogonal frequency division multiplexing 
(OFDM) systems (where narrow correlated sub-channels are 
employed) or other wideband systems to reduce feedback and 
overhead requirements. 

The remainder of this paper is organized as follows.  In the 
next section, we present the system model and describe the 
long-range prediction technique, the statistical model of the 
prediction error and channel statistics.  In section 3, the 
adaptive modulation scheme is discussed and the 
performance of adaptive modulation aided by the proposed 
long-range prediction method is demonstrated. 

 
2. SYSTEM MODEL AND PREDICTION METHOD 

The discrete-time system model is illustrated in Fig. 1.  
The carrier frequency of observed CSI is f 1  and the carrier 
frequency of the transmitted signal is f 2 .  The statistics of 
fading signals received at correlated carriers are discussed in 
[12].  The fading coefficients at two frequencies can be 
expressed as: 
 

c(f 1 ,t) =∑
n=1

N

A n e j (2πfnt+φ1n) (1) 

c(f 2 ,t) =∑
n=1

N

A n e j (2πfnt+φ2n) 

 
where for the nth path, A n is the (real) amplitude and f n is the 
Doppler shift.  The phase difference of the nth path 
φ2n − φ1n= 2 π∆fTn where ∆f = f 2 − f 1  is the frequency 
separation, and Tn is the delay spread.  For large N, c(f n ,t) is  
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Fig. 1. System model 

tributed approximately as a zero mean complex Gaussian 
dom variable.  Hence the amplitudes α(f 1 ,t) = |c(f 1 ,t)| and 

f 2 ,t) = |c(f 2 ,t)| are both Rayleigh distributed.  Assume 
gular distribution of the incident power is uniform between 
2π], horizontal directivity pattern of the receiving antenna 
1, and the delay spread Tn is exponentially distributed [12] 
th the probability density function (pdf): 

) =
1
σ e− T/σ (2) 

ere σ is a measure (rms delay spread [14]) of the time 
lay spread.  The cross-correlation of the two fading signals 
th the time difference τ = |t1-t2| and the frequency separation 
= f 2 -f 1  can be derived as: 

τ,∆f) = E[c(f 1 ,t) c *(f 2 ,t+τ)] = R t(τ) R f(∆f) (3) 

ere R t(τ)=J0(2πfdmτ) is the zero order Bessel function and  

(∆f) =
1

1+(2π∆fσ)2 − j
2π∆fσ

1+(2π∆fσ)2  (4) 

fine ∆fσ as the normalized frequency separation.  The 
ss-correlation (3) vs. ∆fσ for τ = 0 is plotted in Fig. 2.  We 
o plotted the numerical cross-correlation of generated 
ing signals for comparison.  To generate the signals, 
1 ,t) was created first using Jakes model [12].  In this 

per, we employ the 9 oscillators Jakes model with the 
ximum Doppler shift fdm= 100Hz.  Then c(f 2 ,t) was 

nerated from c(f 1 ,t) using the same parameters except 
ases φ2n = φ1n + 2π∆fTn.  Multiple experiments were 
rformed using independent realization of delay spreads Tn 
cording to (2) and the ensemble average of cross-
rrelation was computed.  Using this fading model, we 
aracterize the capability of the proposed method to enable 
aptive modulation. 
Let c(f n ,i), n = 1,2, be samples of the fading signal c(f n ,t) 
 at the sampling interval Ts.  We assume that 
| c(f n ,i) |2] = 1.  The linear MMSE prediction of the future 
annel sample c(f 2

,n) at frequency f 2  based on p previously 
served samples c(f 1 ,n-j) at frequency f 1  is given by: 

2 ,n) = ∑
j=1

p

djc(f 1 ,n−j) (5) 

e optimal coefficients dj are determined as: 

R-1r (6) 
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Fig .2. Cross-correlation vs. normalized frequency separation 

∆fσ for τ = 0 
 
where d = (d1

…dp)T, R is the autocorrelation matrix (pXp) with 
coefficients R i j = E[c(f 1 ,n-j) c *(f 1 ,n-i)] and r is the 
autocorrelation vector (pX1) with coefficients rj = 
E[c(f 2 ,n) c *(f 1 ,n-j)]. The resulting MMSE is given by: 
 

E[|e(n)|2] = E[|c(f 2 ,n) −c^(f 2 ,n)|2] = 1−∑
j=1

p

dj
* rj (7) 

 
In practice, the samples c(f 1 ,n) are observed in the presence 
of complex additive white Gaussian noise (AWGN) n(i) with 
power spectrum density (PSD) N0.  Equations (5-7) can be 
easily modified to include noisy observations similarly to the 
derivation in [7].  Moreover, the effect of noise can be 
significantly reduced when prediction is combined with 
adaptive tracking [7,10].  In the prediction techniques 
employed in this paper, we use noiseless observation, the 
model order p = 100, the sampling rate is 500Hz and the 
observation interval is 100 samples.  All results are obtained 
for the maximum Doppler shift of 100Hz. 

If the channel statistics, such as the time and frequency 
domain correlation, are known, the optimum MMSE channel 
prediction can be employed as in (5-6).  However, as the 
Doppler shifts in (1) vary, the model coefficients need to be 
updated continuously based on the observations.  Since we 
are not able to observe the fading coefficients at frequency 
f 2 , we modify our approach as follows.  The basic idea is to 
predict future channel coefficient c(f 1 ,t) first and then to use 
the frequency correlation function to select the transmitter 
parameters at f 2 .  The predicted CSI at f 1  are given by: 
 

c^(f 1 ,n) = ∑
j=1

p

gjc(f 1 ,n-j) (8) 

 
The coefficients gj are determined using the Least Mean 
Square (LMS) adaptive tracking method: 
 
gj(n) = gj(n-1) + µεn

*c(f 1 ,n-j) (9) 
 
where µ is the step size and εn = c(f 1 ,n) −c^(f 1 ,n).  This 
adaptive tracking can be performed since the observations at  

parameters at f

Observed  
signal at f1 
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Fig. 3. PDF of ideal and actual accuracy factor β obtained 

using prediction at f 1 . fdm = 100Hz and τ = 2ms. 
 
frequency f 1  are available at the transmitter [7,8,10].  
Recursive least square (RLS) can also be used to improve 
accuracy and reduce the observation interval [15]. 

Once c^(f 1 ,n) is found, the adaptive modulation parameters 
for transmitting at f 2  at time n are selected as explained in 
section 3.  Note that c^(f 2 ,n) is not predicted directly.  Instead, 
the prediction at frequency f 1  at time t serves as an estimate 
of c(f 2 ,t).  Suppose α = α(f 2 ,t) is the actual fading amplitude 
and α^ =|c^(f 1 ,n)| is its estimate.  From [9], the prediction 
accuracy factor β = α/α^  has the pdf: 
 

pβ(x) =
2x(

1
λx2+λ)(1-ρ)

((
1
λx2+λ)2-4ρx2)1.5

 (10) 

 

where the correlation coefficient ρ=
Cov(α2,α^ 2)

Var(α2)Var(α^ 2)
, and 

λ = Ω/Ω^  ,where Ω = E{α2} and Ω
^ = E{α^ 2}.  In Fig. 3, we 

compare the ideal β =
α(f 2,t)
α(f 1,t) obtained assuming perfect 

prediction at frequency f 1 , and actual accuracy factor 
obtained using predicted CSI at f 1  ( prediction range is 2 ms 
(one step ahead)) for fdm = 100Hz.  Two different values of 
normalized frequency separation are used.  The pdf of ideal β 

is given by (10) with λ = 1 and ρ= 1/(1+(2π∆fσ)2).  The actual 
pdf of β is obtained by numerical estimation of ρ and λ in 
(10). 
 

3. ADAPTIVE TRANSMISSION USING LONG RANGE 
CHANNEL PREDICTION 

In this paper, we employ variable rate and variable power 
square M-QAM signal constellations due to their inherent 
spectral efficiency and ease of implementation [13].  Given 
fixed transmitter power per symbol Es (or average SNR level 
γ− = Es/N0) and a target bit error rate BERtg, we adjust the 
modulation level M according to the instantaneous predicted  
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Fig.4. Bit per symbol vs. ρ for different SNR for power 

control M-QAM. Target BER=10-3. λ = 1. 
 

channel gain α^ (i) using the distribution of the predicted 
accuracy factor β.  Assume α^  is  the  predicted channel gain 
α^ (f 2 ,t) and pβ(x) is given by (10).  Throughout the paper, we 
employ an adaptive modulation scheme with the thresholds 
αi, i = 1…4 chosen as follows.  When the predicted channel 
gain α^  satisfies αi+1 ≥ α^ ≥ αi, M(i)-QAM is employed, where 
M(1) = 2,M(i) = 22(i-1), i = 2…4, (α5 = ∞) based on: 
 

BERM(i)*(γ−�α^ ) =⌡⌠
0

∞

BERM (i)(γ−��α^ 2)pβ(x) dx ≤ BERtg (11) 

 
where pβ(x) is described by (10).  The BERM(i) is calculated 
from the BER bound of MQAM for an AWGN channel [1]: 

 
BERM(i)(γ) ≤ 0.2exp(-1.5γ/(M(i)-1))       M(i)≥4 (12) 
BERM(1)(γ) = Q( 2γ) 

 
where γ is the signal-to-noise ratio per symbol. 

The BER of this fixed power discrete rate adaptive 
modulation is lower than the BERtg since the thresholds αi are 
chosen using the upper bound in (11).  Below we describe a 
power control policy that maintains the target BER.  From 
(11), when input power Es is multiplied by (αi/α

^ )2, the 
BERM(i)*(γ−�α^ ) becomes: 

 

BERM(i)*(γ−�α^ ) = ⌡⌠
0

∞

BERM (i)(γ−��αi
2)pβ(x) dx = BERtg (13) 

 
Another discrete rate variable power adaptive transmission 
scheme was proposed in [1].  The simpler method described 
above results in less than 0.5dB power loss compared to [1].  
The proposed power control method can be simplified further 
by updating transmitted power at the low sampling rate 
(using predicted α^ n) rather than employing interpolated α^  and 
varying power at the symbol rate.  Furthermore, a constant 
power level can be selected for each constellation Mi using: 
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Fig. 5. Spectral efficiency vs. SNR for different transmission 

techniques. Target BER = 10-3. 
 

⌡⌠
αi

αi+1

 BERM(i)
*(

Es(i)
N0

�α^ )p(α^ |αi<α^ <αi+1)dα^ ≤ BERtg (14) 

 

where BERM(i)*(
Es(i)
N0

�α^ ) is computed in (11) and p(α^ |αi < α^

< αi+1) is the conditional pdf of α^  determined using thresholds 
αi also chosen using (11).  This method is called discrete rate 
discrete power [1]. 

The average bit rate per symbol R^ 
ada of adaptive modulation 

methods is defined as: 
 

R^ ada = ∑
i=1

4

log2Mi ⌡⌠
αi

αi+1

pα̂(x)dx (15) 

 
This rate also gives the spectral efficiency assuming the ideal 
Nyquist data pulse.  For the power control method above, the 
average transmission power Pavg is 

 

Pavg = ∑
i=1

4

 ⌡⌠
αi

αi+1

Es(
αi

α^ )2pα̂(x)dx (16) 

 
where the pdf of predicted amplitude pα̂(x) is: 
 

pα̂(x) =
2x
Ω
^ exp(−

x2

Ω
^ ) (17) 

 
We plot the BPS (15) vs. the correlation ρ in (10) for this 
method for different SNR computed from (16) with λ = 1 and 
BERtg = 10-3 in Fig.4.  The correlation ρ= 1 corresponds to 
perfect prediction, while ρ= 0 represents the worst case when 
the BPS of the adaptive modulation converges to that of the 
non-adaptive M-QAM for given SNR and BERtg. 

We compare several adaptive transmission techniques in 
Fig. 5.  Perfect CSI is assumed.  Continuous rate and power 
adaptation [1] is included in the comparison.  Note that the 
method places no restrictions on the constellation size, which 
makes it impractical.  We also found that the fixed-rate 
truncated channel inversion [1] based on M-QAM has similar  
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performance to the discrete power discrete rate method, while 
it is also non-feasible in practice.  We also plot the Shannon 
capacity of the fading channel [1].  We observe that our 
continuous power control policy achieves about 3dB gain 
relative to the fixed power discrete rate adaptive modulation, 
and the discrete rate discrete power method has power loss of 
less than 2dB relative to the continuous power discrete rate 
transmission scheme. 

Finally, we illustrate the performance of continuous power 
discrete rate adaptive M-QAM aided by channel prediction in 
Fig. 6.  The symbol rate is 25ksymbol/s, and the modulation-
switching rate is set to the symbol rate.  Interpolation is 
utilized to predict the channel coefficients at the symbol rate.  
In Fig. 6 we plot bits per symbol vs. normalized frequency 
separation ∆fσ for the ideal (non-adaptive) MMSE filter (5-6) 
and the robust method using LMS (8-9) algorithm with step 
size 0.005 and estimated ρ= 0.97 and λ = 0.995.  We also plot 
the BPS of the ideal robust method assuming that prediction 
is perfect at frequency f 1 .  (It has almost the same 
performance as the optimal MMSE algorithm.)  The figure 
shows that the robust method achieves near-optimal 
performance, while maintaining the ability to adapt 
transmission parameters to the time-variant channel 
conditions. 

Fig. 6 also shows that adaptive modulation is primarily 
beneficial when normalized frequency separation ∆fσ does 
not significantly exceed 0.1.  (For example, for ∆fσ = 0.1, 
about 17dB is required to obtain 1 BPS for adaptive M-QAM 
as opposed to 24dB for non-adaptive transmission (2-QAM 
or BPSK.))  As frequency separation increases, the BPS 
approaches that of non-adaptive transmission.  Hence the 
frequency separation and the multipath delay (or the 
coherence bandwidth) are the factors that determine the 
performance of the proposed adaptive modulation method. 

The typical values of σ are on the order of microseconds in 
outdoor mobile radio channel [14].  Suppose ∆fσ = 0.1 and 
σ = 1µ sec.  Then the frequency separation ∆f = 100KHz.  
This means that two channels can be separated by 100KHz 



and still benefit from the proposed adaptive transmission 
method.  If σ = 10µ sec, smaller ∆f ≤ 10KHz will results in 
good spectral efficiency when adaptive transmission is used. 

 
4. CONCLUSION 

We presented a novel adaptive modulation method that 
uses predicted CSI of a different carrier.  The statistical 
model of the prediction accuracy factor was created and 
system performance was evaluated for various frequency 
separation values.  We showed that increased frequency 
separation and multipath delay limit the performance of this 
system.  The results can be applied in OFDM systems or in 
correlated uplink and downlink channels to reduce feedback 
and overhead requirements. 
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