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Abstract

Algorithms that enable adaptive transmission techniques on fading channels must reliably

predict the wireless channel at least several milliseconds (a fraction of a wavelength) ahead.  These

long-range prediction (LRP) methods cannot be adequately tested with existing models.  A novel,

deterministic model is optimized for testing LRP methods since it: (1) incorporates the physical

variations of the parameters associated with each reflector, which are not accounted for in stationary

Rayleigh fading or Jakes model;  (2) provides quantitative limits on the variation rate of these

parameters for realistic fading environments, thus establishing tracking requirements for the LRP

algorithm;  (3) identifies the reflector configurations that will engender typical and challenging

conditions for long range prediction algorithms, with insights not easily provided by ray-tracing or

finite difference time domain methods; (4) creates non-stationary datasets to test such an algorithm;  

and (5) illuminates the origins of the temporal and statistical properties of measured data.  It utilizes

diffraction and can handle shadowing.  We compare model data to outdoor microcell field

measurements by examining their autocorrelation functions and probability density functions, and

show that the insights are verified in prediction performance.
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I. Introduction

The tremendous growth in demand for wireless communications capacity has created a need

for new modulation, coding and detection methods that more efficiently use the multipath fading

channels encountered in mobile radio.  Since the channel changes rapidly, the transmitter and

receiver are not usually optimized for current channel conditions, and thus fail to exploit the full

potential of the wireless channel. New adaptive transmission techniques [1, 2] use both power and

spectrum more efficiently to realize the higher bit rate transmission without sacrificing the Bit Error

Rate (BER) performance.  To implement these adaptive transmission methods in practice, channel

state information (CSI) for a future block from tens to hundreds of data symbols long, a few msec

for typical cellular signaling, must be available at the transmitter due to feedback delay and other

constraints [1].  Significant degradation of performance results from using out-dated samples.

Recently, we investigated a novel adaptive long-range fading channel prediction (LRP) algorithm [1,

3, 4, 5, 6, 7].  This method forecasts a wireless channel well beyond the coherence time, and

provides enabling technology for adaptive transmission.  In this paper, we describe a deterministic

model that is specifically designed to provide insights and data sets to aid testing of LRP

algorithms.  The performance of such algorithms is limited by non-stationarity of the channel, so

this property must be incorporated into the model in a physically realistic manner.  We also require

that the model be able to create typical or challenging test data sets, needed to investigate the average

and limiting performance.  We consider the channel to be a sum of sinusoidal waves, directly from

the transmitter or after one reflection (single bounce approximation).  The method of images, used

to describe reflections, provides insights into the variation of Doppler frequency with mobile

position – an important parameter variation.  An augmentation with Fresnel diffraction makes the

data sets realistic and yields insights into the variation of each wave’s amplitude with position, the

other important set of parameter variations.  The insights allow us to create an environment and test

data set that is typical or challenging for channel prediction.  They solve the problem of choosing a

meaningful reflector configuration and mobile route for testing the LRP method.  The physical
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model is primarily meant for outdoor systems where relatively large (10’s of meters or more)

distances from reflectors make our single-bounce approximation valid.  The insights will remain

valid in the indoor case, but multiple bounces will render the data sets produced by the model only

qualitatively correct, since more waves will be important than are modeled in the single bounce

approximation.   If required, manual insertion of properly placed additional reflectors into the model

allows generation of quantitatively correct indoor data.

Many models provide data sets for short-term fading.  The deterministic, stationary Jakes

model [8] is a standard model in computer simulations. The theoretical Rayleigh fading channel, in

which the fading coefficients are modeled as complex Gaussian random variables [8, 9] can be used

to set theoretical limits on performance.  Various physical models [10] have been developed to

either provide datasets or describe measurements.  Statistical models overcome the variation of

environments by assuming statistical variations (for a particular environment [11]) while providing

an overall constraint such as time of arrival through placement on an ellipse [12], or clustering [13,

14].  While the statistical models do provide an adequate testbed for some systems, they often do

not provide datasets that correspond to realistic physical variations in a particular environment (e.g,

[15]) and their assumptions may not be applicable (e.g, [16]).  For our primary goal of testing a

long-range prediction algorithm, the non-stationary aspects of the channel, i.e. the variation of

channel parameters (amplitudes, frequencies and phases) associated with each reflected wave must

be properly modeled.  The rate of change of these parameters significantly affects prediction

accuracy [1, 3, 17, 18].  The key problem in modeling parameter variation is to do so in a physically

meaningful way, which is not possible with the models described above.  Our model does this by

accurately accounting for the origins of the realistic physical variations, and providing insights to

overcome the arbitrariness [16] of particular reflector placement.  The LRP algorithm has similar

performance on measured data and datasets generated by our model, whereas its performance using

the Jakes model is significantly different [1, 3, 6, 17, 18].

In section II, we describe the physical model, computational details and its relation to other

channel calculation methods.  Section III contains a description of the model insights and their
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origins, and section IV gives an overview of how these insights enhance our understanding of

measured data channel statistics.  The LRP algorithm and its performance is described in section V.

Again, the insights are shown to correctly predict performance trends.  We conclude in section VI.

II. The Physical Model

Our physical model for short-term fading differs considerably from propagation modeling

studies [e.g, 19, 20] that consider long-term fading for base station siting or cell size.  They average

out the short-term fading, and typically rely on accurate environmental models to obtain quantitative

agreement with measurements, although statistical factors have been used [21].  Our goal to test

long-range prediction algorithms that forecast the channel to a fraction of a wavelength ahead

implies that we need to predict the rapid channel variations associated with the short-term fading

signal [8, 9].  Furthermore, the statistical properties of the test datasets, including the variations of

the individual reflected wave amplitudes, frequencies, and phases need to be properly chosen.

When we compare our model data to measured data, we do not compare it ‘point-by-point.’

Instead, we create datasets that have the same statistical properties.  We show below that these

statistics are influenced by the sizes and types, flat or curved, of the reflectors present, and that the

performance of the LRP algorithm is also determined by these environmental properties.  The lack

of a point-by-point comparison is unusual in propagation studies [19].  Although we could arrange

the reflectors in our study using an iterative procedure to produce point-by-point agreement, the

result is unlikely to be unique unless a large amount of measured data is used.  Furthermore, two

tracks of short-term fading data for the mobile separated by a fraction of a wavelength will be quite

different in general, if compared point-by-point.  Their statistics, however, and the performance of

the LRP algorithm on them will be similar.  For algorithm verification, we also need to know if a

dataset is going to be (statistically) typical for a mobile unit to encounter, or whether it represents a

very challenging case that may rarely be encountered in practice.  Our model provides these insights

from theoretical considerations, not by repeated simulations [22], so that we can easily generate data

of both types, and therefore make strong statements about the prediction algorithm performance in
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any environment.  We will consider just one resolved multipath component (flat fading).  The use

of the model for the frequency selective channel is discussed in [17].

The image method, upon which our physical model is based, can be used to calculate the

exact electric field for a few specific geometries.  We extend it for realistic objects with the use of

apertures.  Fresnel diffraction is required to maintain accuracy near the apertures [23].  Multiple

scattering from small objects where diffraction is important creates an excessive number of image

sources, and is the primary drawback of the method.  This does not represent a serious deficiency,

however, since the combination of imperfect reflection and rapid reduction of power with distance

makes such multiply-diffracted signals weak compared to more direct waves – implying that all but

a few of the image sources can be ignored.  We ignore all but the first bounce in our model’s

automatic calculation.  Besides, insights into the rates of parameter variations for each object

producing a significant reflected wavefront can be readily deduced from the image method.  The

prediction only requires a local model of the flat fading, so even cases for which a weak diffracted

signal serves as the source, such as a canyon-like street, can be accurately considered with this

method.  A few other methods can be used to produce data sets with proper non-stationary

statistics.  They involve calculation of the electric field in explicitly-defined environments.  Finite

difference time domain (FDTD) methods [19, 24] can be used more easily in complex

environments, but for the purpose of these studies, we value the insights and generic prediction

requirements of our model.  A combination of ray tracing for long-term fading and identification of

the few important rays, (effective transmitters in our notation) as in Ref. [25], with our method for

local insights provides a complete simulation tool.

The augmentation of the image method for calculation of the microwave fields near realistic

objects is accomplished by the addition of an aperture in the object plane, which defines the size,

large or small, of an object, and acts as a source of diffraction.  Its purpose is to limit the region

over which microwaves reflect, or since we use the method of images, to limit the passage of

microwaves from the effective (image) source through the object plane.  The placement of the

effective source is determined by the object curvature.  For flat objects, the side of the object



6

towards the real source is extended so that it covers a plane, the object plane, then the real source is

reflected through the plane along the line containing the real source and perpendicular to the plane.

For distant real sources, this means a distant effective source, which will be important in our later

discussion of parameter variation rates.  A curved (spherical) object’s effective source position is

determined by the radius of curvature of the sphere R: when the source is a distance R1 away from

the reflector, the image is a distance R2 = R – R2/(R1+R) behind the sphere’s surface [26].  Thus,

the effective source is likely to be much closer to the calculation point when the object is curved

than when it is not.  The amplitude of each effective source is given by the reflectivity ¬  times a

factor that is required to obtain the intensity of the source at the center of the reflector's aperture.

Complex objects are represented as several flat or curved objects with adjacent apertures.  

Now that we have calculated the position of the effective source for the n-th reflector, reffscatt,n,

we can calculate its contribution to the electric field at the mobile’s position, rptat.  The tips of the

vectors are noted in the horizontal projection, Fig. 1, including the time dependent rptat that indicates

the position of the mobile and brings time dependence into the equations below.  The origin is

arbitrary so is not shown in the figure.  The Fresnel diffraction formalism with point-illumination

[27] is used to calculate the field for each reflector in the region of interest.  The interference pattern

or flat fading coefficients c(t) (coherent sum of the complex electric fields En(t) of wavelength l)

generated by N plane-wave reflectors with (time-dependent) parameters: amplitude An, (Doppler)

frequency fn and phase yn, and time averaged over an optical cycle, can be written as:

Pattern = c(t) = Â
n=1

N
! E

n
(t) = Â

n=1

N
! An e-2pjfnt+jyn , (1)

En(t) = ËÁ
Ê

¯
˜̂j¬Eine-2pj r~/l+jf

2 !
|rscatt-reffscatt|

r ![C(wx 2)-C(wx 1)-jS(wx 2)+jS(wx 1)][C(wy 2)-C(wy 1)-jS(wy 2)+jS(wy 1)] n

with wxm = 
2

lr (xm - x0), wym = 
2

lr (ym - y0), C and S the Fresnel integrals [27] and

1
r = 

1
!!|rscatt!-!reffscatt| + 

1
!!|rptat!-!rscatt|.  All variables refer to the n-th reflector (the index is dropped in
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the equation for clarity) with the exception of l and rptat, which do not vary with n.  All time

dependence enters through rptat in rn and rn.  The parameters and position vectors rscatt,n, reffscatt,n, rptat,

x1,n, x2,n and rn = |rptat - reffscatt,n| are defined in Figure 1.  The reflector at (rscatt)n has reflectivity ¬n,

and incident power from the transmitter (Ein)n.  The phase factor, e-2pj r~/l+jf, contains the propagation

term proportional to r~n and the phase from the reflection process, fn.  It could also include effects

from index variation due to thermal plumes, but we do not include them since their variation rate is

slow so will not affect LRP performance.  The propagation term r~n is simply rn for a flat reflector,

but needs to be increased by |rtrans - rscatt,n| – (R2)n for a curved reflector since the placement of the

effective source is closer to the aperture than the transmitter in this case. The phase fn could be

calculated with the Fresnel formulae, [27], but we treat it as a constant.  It depends upon the details

of the object such as its complex index of refraction, and tends to slightly compress or expand the

pattern, so its variations have the same effect as small changes in vehicle speed.  We do not insert

the spatial variation of this contribution to the phase.  For clarity in this paper, we make the common

2d assumption [10] by taking an infinite aperture in the vertical-, y-direction. The Fresnel integral

term for the y direction in square brackets reduces to 2 .

To create a dataset, the user of the model specifies the location of the transmitter, rtrans, and

the centers of the apertures, rscatt,n, for each reflecting object.  The aperture will typically be the size

of the object itself, positioned on the side of the object towards the incoming radio waves.  The

orientation of the aperture, object reflectivity, object curvature, and reflection phase shift are also

specified for each object.  To allow for shadowing of the transmitter, an aperture can be specified

for it (as is implicitly specified for the other reflectors by their size and location).  The field

calculation for the transmitter including its aperture is the same as that for the effective sources,

except the transmitter position is specified and does not need to be calculated.  Other inputs to the

modeling program include the carrier frequency and region of interest (location, size and number of

points for each of the two dimensions).  The region of interest may be any rectangular array of

points from a square to a single line in either direction.  The model calculation running on a
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Macintosh G3 computer takes a few seconds for several thousand points in the region of interest

with ~10 reflectors, or a few minutes for ~100,000 points in the region of interest and ~100

reflectors.

Extensions of this model allow: (1) the calculation of the time delay profile [8, 9, 17] as a

function of mobile position, by simply adding the delay of each path segment, from the transmitter

to the reflector and the reflector to the mobile, so that the delay is tn = rn/c, with c the speed of light,

(2) modeling of wideband signals, for which the algorithm is run at a set of frequencies, and (3)

shadowing of reflected signals by intervening structures [17].  This is in addition to the above-noted

transmitter shadowing, and is accomplished in an approximate manner by moving the aperture away

from the object plane (i.e. assuming that the object’s reflections are limited by the shadowing

structure rather than the object size).  When this is done, the object plane is used only to determine

the location of the effective source.

III. Model Insights

The model insights derive from the simple relation between the field contribution from each

component and the (effective) point source and aperture response in the model.  For a specific

example, consider one large flat and five curved reflecting objects creating an interference pattern

with the source.  The 1 GHz source is 105m to the left of the center of the 10m square region

shown in Figure 2(a).  A large object (building) 10 m to the right of the region does not run

perpendicular to it, so its effective source is 130 m to the right of the region's bottom.  Its amplitude

reflection coefficient is 2/3.  The five spherical reflectors to the right are evenly spaced on a 10 m

long line as shown and with effective sources 1.8 m to the right.  They approximate five cars parked

along the road.  The interference pattern (route 2) shown in Figure 2(b) is complex with narrow,

deep fades which are ~1/100 the average power.  The Doppler shifts fn are easy to calculate as a

function of position with the image method: for a stationary source (reflector) and v<<c, it is given

by fn = fc(v/c)cosa
n
, where fc is the carrier frequency, v is the speed of mobile (26.6 m/s here), c is
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the speed of light, and an is the incident angle of the Poynting vector (ray direction or wavefront

normal) relative to the mobile's direction [8, 9].  The change in angle towards the effective source,

which dominates the Doppler frequency variation rate for constant mobile velocity, is slow (< 18

Hz/second) for the reflection from the flat object, since the image source is distant.  Conversely, the

proximity of the effective sources for the curved objects causes faster variations.  Route 2 in Figure

2(a) passes close to the curved objects, so those components of the interference pattern will have

relatively rapid Doppler frequency variations (up to 890 Hz/second).  This variation causes this

route to be a challenging case, although the variation rate is still much slower than that of the

channel c(t).  The rate of Doppler frequency variation along route 1 is <200 Hz/second, which is

more typical in practice.  Other sources of change in the Doppler frequencies are due to changes in

the mobile’s speed and direction.  These are on the seconds time scale unless there is an accident,

so are not as limiting.  The amplitudes, An(t) in Eqn. 1, also vary more quickly along route 2, due to

the 1/r dependence of Eqn. 1 and diffraction effects.  Diffraction effects are important for small

objects and reflections near the edges of larger objects.  For a small object, the reflection

(diffraction) has a well-defined maximum that spreads with characteristic angle approximated by x/r

= l/lx radians for an object of size lx = (x2-x1).  

In general, the insights gleaned from the model indicate that the variation of the amplitudes An(t)

and the Doppler shifts fn(t) are slow in space except near curved objects and near the edges of

medium-sized flat objects and shadowing objects.  The phase shifts fn do not vary except due to the

Fresnel formula results mentioned above, or propagation conditions such as thermal plumes.

Shadowing by a nearby building can also be challenging, resulting in the addition of a significant

reflector in as little as 0.1 sec (derived from edge diffraction formulae as built into (1)), although

this time increases linearly with the distance from the building.  These events (passing near a car or

shadowing by a nearby building) are short in duration and relatively rare.
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IV. Understanding Measured Data Statistics

The long-range prediction method was tested with field-measured data to compare

performance with the data sets produced with our model.  The results are very similar to the model-

based tests [1, 3, 17, 18].  The measured data was provided by Ericsson, Inc. and contained 100,000

samples taken at a sampling rate fs = 1562.5 Hz, and at a carrier frequency fc = 1877.5 MHz.  The

mobile speed during acquisition varied between 0 -> 50 km/hr, but most samples were taken at 30

km/hr.  The sampling environment was low density urban Stockholm (Kista).  The measurement

system and environment are similar to those used in Ref. [28, 29, 30, 31].

We begin by showing that the measured data is indeed not stationary by comparing

empirical autocorrelation functions from a few different segments of the data set†[32].  This is

shown in figure 3.  These differences result from the variation in the number and locations of the

reflectors along the measurement track. For example, one 10,000-point segment (sample points

55,000 ~ 65,000) of the data set had an autocorrelation function that resembles the autocorrelation

of Jakes model with an infinite number of reflectors [8].  Another segment (samples 1 ~ 10,000) of

the measured data had an autocorrelation function with a much wider main lobe and a flatter tail.

Our goal here is to understand the types of environments that produce these various autocorrelation

functions.  In particular, will they be produced in environments that are dominated by distant

effective sources, as would be the case when the objects are flat, or where curved or smaller objects

cause the effective source to be much closer to the mobile’s path?  These experiments provided us

with insights into the types of reflectors in those environments and therefore into the nature of flat

fading and the expected prediction accuracy.

Two model scenarios were generated to identify the autocorrelation properties in two

important limiting cases.  We will find that they resemble the autocorrelation functions found in two

of the measured data segments.  In the first scenario (called the local effective source environment),

we assume 8 curved reflectors are randomly and closely set along two sides of a 100 meter road,

                                                
†  We define 'autocorrelation function' here and afterwards as the autocorrelation function for the observation samples in the empirical sense,
not for a random process in the statistical sense.
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illustrated in Figure 4(d).  This scenario is expected when the mobile passes cars parked along the

side of the road.  In the second scenario (called the remote effective source environment), 8 flat

reflectors have effective sources distant from the road, as shown in Figure 4(e).  This scenario

corresponds to buildings near the road, without parked vehicles.  A remote effective image source

does not imply a remote reflector, since the image source can lie far behind a flat reflector.  We

expect that the local effective aperture environment will be more common in urban or suburban

areas, due to the larger number of cars, and that the remote effective source environment will be

more common in rural areas and in industrial areas without street parking, but that the local/remote

variation is probably more important than the urban/suburban/rural distinction for LRP

performance.  In both cases, the carrier frequency used was fc = 1GHz, and the vehicle speed 49.68

km/ h, corresponding to a Maximum Doppler shift of 46 Hz.  We modified the original data (both

physical model datasets and the measured datasets) by subtracting the mean values and normalizing

the average power to unity.  These modified datasets were used throughout the paper.  By

examining the probability density functions (pdf) of fading coefficient amplitudes, we confirm that

the distribution of this data is very close to Rayleigh fading for both channels, which can be seen in

Figure 4(c).

The qualitative features of the local and remote effective source autocorrelation functions,

the width of the primary peak, and sidelobe height can be understood from the model.  In the

discussion below, we assume that the vehicle speed, or equivalently the maximum Doppler shift, the

maximum fn, is fixed.  The presence or absence of sidelobes depends largely on the balance

between the period of oscillation of the interference pattern (related to the spread in angles of

incidence of the components), and the distance over which non-stationarity effects become

important (parameter variations).  To see how the spread of angles affects the oscillation period,

recall that co-propagating beams show no interference, while counter-propagating beams have a l/2

oscillation period.  The reflectors in the local effective source environment subtend a larger angle

than those in the remote case, so one expects more closely spaced sidelobes for the local case, as is
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seen in Figure 4(a).  This suggests that data in Fig. 4(a) is from a region with a significant number

of local reflectors, such as a region with cars along the road.  The effects of non-stationarity depend

upon the interval averaged over.  In the interval we used to calculate the autocorrelation function for

the remote case, the wider-spaced sidelobes have been reduced by the parameter variations (via

oscillation period variations along the track).  

The coherence time, or width of the primary autocorrelation peak, depends inversely on the

range of Doppler frequencies present.  It decreases with increasing angular range of the incoming

wavefronts, so will be larger in the remote effective source environment, as seen in Figure 4(b).

This suggests that distant effective sources, such as reflections from flat buildings along the road,

dominate the signal in this segment.  We have also found that it decreases with increasing

dispersion of tilt angles for a set of flat (remote effective source) reflectors.  The fading with the

autocorrelation derived in Jakes’ book [8] requires a large range of Doppler shifts, so has the

shorter coherence time and large sidelobes.  It resembles the local effective source environment or

the circle of reflectors (large range of angles) in the Jakes model.  This behavior could also result

from remote effective sources when they are spread over a sufficiently large angular range.  We

note that one can concoct geometric placing of local effective sources so that the autocorrelation

function has much smaller sidelobes than in Fig. 4(a) -- take a path so close (~1-2 m) to the

effective sources that parameter variations wash out even the closely spaced sidelobes for any

reasonable autocorrelation sampling length, but this is an unusual case.  Through these

comparisons, we conclude that the low density urban measured data was collected from regions

with and without parked cars, and that these represent diverse mobile radio environments, which can

be understood using our physical model.

V. Understanding Long Range Prediction Performance

A novel long-range linear prediction (LRP) method for the flat fading channel was proposed in

[1, 4, 5].  It is different from the conventional channel estimation in two aspects.  First, the novel

LRP method focuses on predicting the future behavior of the fading coefficients rather than
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estimating its current value.  Second, in contrast to conventional channel estimation employed at

high sampling rate (usually at the data rate, of ~20 kHz or higher, e.g. [33]), the novel method uses

considerably lower sampling rate (on the order of twice the maximum Doppler frequency), which

allows the long range channel behavior to be captured [1, 7].  Low rate samples are then interpolated

to predict the channel coefficients at the data rate.  The LRP method is based on autoregressive

modeling.  In this model, the predicted future channel sample c^n is based on p previous channel

samples cn-1, ···, cn-p:

c^n = Â
j=1

p
!djcn-j (2)

where cn is the fading signal c(t) in (1) sampled at the lower rate, p is the model order, and the

optimal minimum mean square error (MMSE) coefficients dj are determined by the orthogonality

principle [1, 7].

Channel parameter variations and the limited initial observation interval necessitate adjustment

of the LRP coefficients dj in (2).  These adjustments are performed as new channel samples are

received.  To update the LRP coefficients dj's when the n-th channel sample becomes available, the

least mean squares (LMS) adaptive tracking method assigns [34]:

d(n+1) = d(n) +hen c~ n
*,  (3)

where h is the step-size, d(n)=(d1(n), ...dp(n))T is the time-dependent vector which reflects the

variations of channel model parameters, c~ (n)=( c~ n-1, ..., c~ n-p )T is the vector of updated channel

estimates, and the error signal, en = cn - c^n ª c~ n- c^n.  In this paper, we set c~ n= cn in the computation of

en and assume that noise-free channel samples cn are observed.  In [1, 7], we show how an estimate

c~ n can be computed in the presence of noise using the decision-directed LMS algorithm.  Improved

adaptive tracking using recursive least squares (RLS) adaptation of the coefficients dj was

addressed in [17, 18].  Application of adaptive tracking significantly improves accuracy and

provides robustness for long-range prediction as the physical channel parameters vary.

Since feedback and processing delay are inevitable, the prediction of several samples

(several ms) ahead rather than just one step ahead, as (2), is usually desired.  To achieve the long
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range prediction, improved parameters d(n) are used in the modified iterative autoregressive

equation to predict future channel samples [1, 3]

c^n+r = Â
j=1

r-1
!dj(n+1)c^n-j+r+ Â

j=r

p
!dj(n+1)cn-j+r, , r=1…R, (4)

where R is the prediction range.  The c^n+R is the prediction of cn+R R samples ahead.  When delay

exists, we cannot update all of the dj in (4) until the corresponding actual channel samples become

available.  Thus, we have to use c^n-j+r for j=1, ···, r instead of using the actual cn-j+r for j = r, ···, p in

(4).  Since the sampling rate is lower than the data rate, even R=1 implies prediction from tens to

hundreds of data bits ahead.  For example, in [7] the sampling rate is 500 Hz, and for R = 1 we

predict 2 ms ahead.  Prediction can be performed at the receiver or at the transmitter, depending

upon computational complexity constraints.  The feedback requirements are low in either case since

the symbols need to be fed back only at the low sampling rate.  If prediction is implemented at the

receiver, feedback load can be reduced further for some adaptive transmitter applications.  For

example, only antenna selection bits for selective transmitter antenna diversity systems [1, 32], or

only modulation level for adaptive modulation applications [1, 2] needs to be fed back.

We have previously shown the importance of using a nonstationary channel model for testing

the prediction algorithm (prediction accuracy on Jakes model data is different from measured data)

and that our model can produce datasets with realistic parameter variations (the prediction algorithm

performance is similar to its performance on measured data) [1, 3, 17, 18].  This can also be

observed in Fig. 5, for which the MSE = E(cn-c~ n)2 at short prediction ranges (up to 0.3l) and

saturation at larger prediction ranges is similar for the measured and physical model data, while

being significantly different for the stationary Jakes model data.  At short prediction lengths, fading

generated by Jakes model is easier to predict due to stationarity, but at longer prediction intervals

(more evident for prediction greater than a wavelength as in [17]), the measured data and physical

model prediction MSEs saturate, while the MSE for the Jakes model prediction rises above them.

This is probably due to the lower number of significant reflectors in reality compared to those (all at

equal amplitude or importance) in the Jakes model.
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We now show that the performance of the LRP algorithm in various environments can be

explained using insights from our model.  In all cases, the complex fading coefficients c(t) are

predicted using the adaptive LRP algorithm jointly with LMS tracking of the autoregressive (AR)

model coefficients as in equations (2-4) [1, 7].  Although the prediction method doesn't use them,

the variations of Doppler shifts and amplitudes with position for each of the reflected components

can be computed as discussed in section II, and can be used to explain the adaptive tracking

performance.  The MSE performance is compared for the typical vs. challenging cases using MSE

vs. model order or prediction range.  Figure 6 shows the geometry used and the results.  We used

randomly placed reflectors to the right of the region, constraining them to be near the path but at

least a certain distance (for physical feasibility, see the figure) from the mobile’s path.  As the

insights from the model suggest, the path closer to the effective sources is relatively more difficult

to predict as measured with both metrics.  We also find that the performance of the prediction

algorithm is adequate even for the challenging case, validating its performance in diverse

environments.

Finally, we show that the insights identifying challenging and typical cases apply to

signaling via bit error rate (BER) simulations.  In [1, 7] we applied the long-range prediction

algorithm to study adaptive transmission techniques as selective transmitter diversity and adaptive

modulation.  To demonstrate the application of the proposed prediction method for adaptive power

control, we analyzed the Truncated Channel Inversion algorithm (TCI) [2] aided by long-range

prediction (see also [5, 6, 7]).  The underlying theme of this scheme is to interrupt transmission for

time intervals when the predicted power level is below a previously chosen threshold value, th, and

send the data symbols scaled by the inverses of the predicted fading coefficients when the predicted

power is above the threshold.  In simulation, we used binary phase shift keying (BPSK) as the

modulation scheme, and assumed coherent detection.  The reflecting object environment used to

create the typical and challenging case fading resembles the one shown in Figure 2(a), except the

large reflector is removed (to reduce the effect of LOS) and 14 curved reflectors are randomly

placed along the right side of the 100 meter road.  The fading signals generated along the equivalent
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of routes 1 and 2 in Figure 2 (a) are considered as typical and challenging cases, respectively.  The

channel sampling rate is 1000 Hz and the Maximum Doppler shift 67 Hz, corresponding to a

vehicle speed of 45 miles /h for fc = 1 GHz.  The data rate is 50 Kbps.  The simulation utilized 2-

step (2 ms) ahead prediction.  The BER performance is illustrated in Figure 7.  The performance

difference shows that our physical model insights can help us create different mobile radio

environments that both test the limits of our prediction method and validate its application in

adaptive power control, for a range of environments.

VI. Conclusions

We have described a physical model that generates realistic, non-stationary data for testing

the algorithm for long-range prediction of wireless signals, and provides expectations of the degree

of prediction difficulty for various environments.  This physical model can be used to gain insights

into the interference patterns that give rise to multipath fading in mobile communications.  It allows

calculation of the rate at which reflected components’ amplitudes and frequencies vary, and hence

the adaptive tracking speed required to accurately predict future channel properties.  The parameters

vary slowly enough for tracking in most cases, on the order of 0.1 second even in challenging

cases.  This is much slower than the variation rate of the actual fading channel.  The model can be

used to determine the nature of the environments in which measured data were acquired via channel

statistics, and can be used to test channel prediction methods.  The important messages are that

prediction is tractable, our physical model correctly identifies typical and challenging scenarios as

measured by MSE performance of the LRP algorithm, the MSE performance when measured data

is used is similar to that when our model is utilized to generate the channel, and the prediction

algorithm has acceptable performance even in very difficult scenarios.  We couldn’t assert the last

statement without the model insights.
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Figure 1. The parameters used to calculate the amplitude from one reflecting object, shown as a
dotted rectangle.  Also shown is the aperture chosen.  The origin is arbitrary since only differences
between the vectors are used.  The x-direction shown here is defined for the particular object plane,
and varies in direction for different objects; the y-direction is similar.
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Figure 3 Empirical autocorrelation functions for various segments of the measured data, as indicated

by the bar in the middle of the figure representing the entire data set.  The variation indicates that the

data is not stationary.  The abscissa can be converted to distance by multiplying by the mobile’s

velocity, 30 km/hr.



22

10 20 30 40 50 60 70 80-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

n:  index of time ---->

Au
to

co
rre

lat
ion

 fu
nc

tio
n

10 20 30 40 50 60 70 80
-0.5

0

0.5

1

n:  index of time ---->

Au
to

co
rre

lat
ion

 fu
nc

tio
n

(a) (b)

    
0 0.5 1 1.5 2 2.5 3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

pd
f

normalized amplitude

(d)

(e)
(c)  

Figure 4.  Comparison of the autocorrelation functions and pdf's of the physical model and

measured data.  Black:  measured data; Light gray: physical model.  (a): autocorrelation function for

the local environment; (b): autocorrelation function for the remote environment; (c): pdf in the local

effective source environment (similar to the pdf for the remote effective source environment); (d):

local effective source  environment. The reflectors are objects, the effective sources are circled x's;

(e): remote effective source environment.
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Figure 5.  Mean square error of the prediction for Jake's model, physical data and measured data
are given as a function of prediction range in wavelengths. (p = 40, the maximum Doppler shift fdm
= 46 Hz, and the sampling rate is 1562.5 Hz).
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Figure 6. The mean square error of the prediction algorithm demonstrates that the challenging cases
are more difficult to predict than the typical one, i.e. the insights apply, although the prediction is
adequate for both cases.  (a) The geometry shows the two paths and 14 curved reflectors randomly
placed along the right side.  The challenging case is within 2 m of the effective sources while the
typical case is at least 8 m from them.  A 1 GHz carrier frequency and 67 Hz maximum Doppler
shift (45 MPH) are used with a 1 kHz sampling rate. (b) The MSE for the prediction vs. model
order for 3 ms ahead prediction.  (c) The MSE vs. prediction range for a model order p = 40.



25

0 2 4 6 8 10 1210-4

10-3

10-2

10-1

SNR (dB) per bit

Rayleigh

th=0.1th=0.4

AWGN

theoretical     
typical     
challenging 

BE
R 

 

Figure 7.  BER performance of TCI for typical and challenging case mobile radio environments is
compared.  Also shown are the theoretical limiting cases of Rayleigh fading and the average white
Gaussian noise channel (AWGN).  (2ms ahead prediction, fdm=67Hz)


