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Long Range Prediction and Reduced Feedback
for Mobile Radio Adaptive OFDM Systems

Alexandra Duel-Hallen, Hans Hallen, and Tung-Sheng Yang

Abstract— Adaptive orthogonal frequency division multiplex-
ing (AOFDM) modulation is a promising technique for achieving
high data rates required for wireless multimedia services. To
accomplish efficient adaptive channel loading, the channel state
information (CSI) needs to be fed back to the transmitter. Since
the fading channel varies rapidly for fast vehicle speeds, long
range fading prediction (LRP) is required for mobile radio
AOFDM to insure reliable adaptation. We use past channel
observations to predict future CSI and perform adaptive bit and
power allocation for the OFDM system. We derive the minimum
mean-square-error (MMSE) long-range channel prediction that
utilizes the time and frequency domain correlation functions
of the Rayleigh fading channel. Since the channel statistics
are usually unknown, robust prediction methods that do not
require the knowledge of the correlation functions are developed.
Statistical model of the prediction error is created and used in
the design of reliable adaptive modulation. In addition, several
methods that significantly reduce the feedback load for mobile
radio AOFDM systems are developed and compared. We use
a standard sum-of-sinusoids model and our realistic physical
model to validate perfrormance of proposed methods. Simulation
results demonstrate reliable performance and robustness of the
proposed techniques, thus validating feasibility of AOFDM for
rapidly varying mobile radio channels.

Index Terms— Adaptive modulation, fading channel predic-
tion, multipath fading, orthogonal frequency division multiplex-
ing (OFDM), physical channel modeling.

I. INTRODUCTION

CONTINUED increase in demand for all types of wireless
services such as voice, data, and multimedia is fuel-

ing the need for higher capacity and data rate. Orthogonal
frequency division multiplexing (OFDM) [1], [2] has been
proposed for use in high-speed wireless data applications due
to its relatively simple receiver structure compared with single
carrier transmission in frequency selective fading channels.
In OFDM, the frequency band is divided into narrow sub-
carriers, and data bits are multiplexed onto these subcarriers.
These systems eliminate the need for an equalizer by greatly
reducing the intersymbol interference (ISI), and have been

Manuscript received April 14, 2004; revised March 15, 2005 and October
3, 2005; accepted October 3, 2005. The associate editor coordinating the
review of this paper and approving it for publication was C. Tellambura. This
research was supported by NSF grant CCR-0312294 and ARO grant DAAD
19-01-1-0638.

A. Duel-Hallen is with the Dept. of Electrical and Computer Engineering,
North Carolina State University, P. O. Box 7911, Raleigh, NC 27695-7911
USA (e-mail: sasha@eos.ncsu.edu).

H. Hallen with the Dept. of Physics, North Carolina State University, P. O.
Box 8202, Raleigh, NC 27695-8202 USA (e-mail: Hans_Hallen@ncsu.edu).

T.-S. Yang was with the Electrical and Computer Engineering Dept. at
North Carolina State University. He is now with Mobile Devices Technology,
Taiwan ROC (e-mail: tsyang_99@yahoo.com).

Digital Object Identifier 10.1109/TWC.2006.xxxxx

extremely popular in Digital Subscriber Line (DSL), digital
audio and television broadcasting (DAB and DVB) in Europe
and wireless Internet access.

Adaptive OFDM (AOFDM) system, similarly to adaptive
modulation for single carrier flat fading channels [3-6], [14],
[15], involves optimizing the modulation level and the transmit
power over the entire frequency band to maximize the spectral
efficiency. In a frequency selective fading channel, some
subcarriers experience a deep fade while others are subject
to channel gain. The spectral efficiency can be improved
by allocating more bits to those subcarriers with favorable
channel conditions than to those in a deep fade, as motivated
by the “water filling” distribution [7]. Several practical integer-
bit and power allocation algorithms have been addressed in
[8-11] that perform the optimum or near-optimum loading of
bit and power in an OFDM frame.

Since the channel is rapidly time variant for fast vehicle
speeds, there is a mismatch between the channel quality that
is estimated by the receiver and fed back to the transmitter,
and that is actually experienced during the transmission of
the following OFDM frame. This degrades the achievable
performance gain of AOFDM, especially in rapidly time
variant fading. Even in an open-loop system where the CSI
is obtained by channel estimation at the transmitter as in
time division duplex (TDD) operation [5], current CSI is not
sufficient since future channel conditions need to be known
to adapt transmission parameters. To realize the potential of
AOFDM, the channel variations have to be reliably predicted
at least several milliseconds ahead.

Recently, several techniques were developed to predict
future behavior of the mobile channel. In [30], the multivari-
ate adaptive regression splines (MARS) model was used to
capture the dynamics for predicting parameters of wideband
fading channels several millisecond ahead for fast vehicle
speed. The sub-space based [24] root-MUSIC method [31]
and ESPRIT type algorithm [32] were employed to estimate
the power spectrum that constitutes the fading process. Then
these sinusoids were extrapolated to predict future samples.
These methods were tested using synthetic and measured data,
and it was concluded that reliable prediction is feasible at
least one wavelength into the future. An adaptive long-range
prediction (LRP) method for flat fading channel was also
proposed in [12-15]. This algorithm employs an autoregressive
(AR) model to characterize the fading channel and computes
the minimum mean-square-error (MMSE) estimate of a future
fading coefficient based on a number of past observations. The
advantage of this algorithm relative to conventional methods
is due to its low sampling rate (on the order of twice the max-
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imum Doppler shift and much lower than the data rate), which
results in longer memory span and prediction further into the
future for a fixed filter length. The low sampling rate also
results in reduced feedback rate. The LRP can be implemented
adaptively and thus is less complex and more robust than
other fading prediction techniques. More recently, the LRP
was extended to frequency selective channels. In [18], [19],
LRP and adaptive modulation using CSI of another carrier
was addressed, and in [27], LRP for frequency hopping (FH)
systems was investigated. In this work and [38], we develop
the long-range prediction algorithms for OFDM systems. An
ideal MMSE method that utilizes previous observations in time
and frequency domain, and robust adaptive LRP algorithms are
developed and compared. The LRP is utilized in adaptive bit
and power allocation for the OFDM system. Statistical model
of the prediction error is created and used in the design of
reliable adaptive modulation based on the method proposed
in [6]. Adaptive modulation was also combined with single
carrier channel prediction in [14], [15], [33], [34]. Adaptive
OFDM with imperfect channel state information was analyzed
in [35-37].

The fading channel is characterized as superposition of
several reflected components. The accuracy of the LRP al-
gorithm is determined by the rate of change of amplitude,
frequency and phase associated with each reflector [12], [15-
17]. However, the standard Jakes model or a stationary random
process description does not capture the variation of these
parameters. To validate the LRP, a realistic physical channel
modeling based on the method of images was proposed in
[15-17]. It was demonstrated in [15-17] that this physical
model generates datasets that closely resemble measured data,
and results of the LRP for the physical model and measured
data are similar. In addition, this model can generate different
scenarios to classify typical and challenging cases for testing
the algorithm. These scenarios are more difficult to identify
with the measured data. Thus, the physical model allows to
test robustness and to determine practical constraints of the
proposed adaptive transmission methods. In this paper, we
employ this physical model to test performance of the LRP
for AOFDM.

The transmitter can obtain the knowledge of the CSI to
properly adapt the modulation parameters for each subcarrier
from different sources. If the communication between the two
stations is bi-directional and the channel can be considered
reciprocal, as, for example, in TDD systems, then each station
can estimate the channel quality on the basis of the received
symbols and adapt the parameters to this estimation. This
is called open-loop adaptation [5]. If the channel is not
reciprocal, the receiver has to estimate channel quality from
feedback resulting in closed-loop adaptation. The feedback
load consumes power and bandwidth, and the fed back CSI
needs to be quantized resulting in degraded performance.
(Note that for many adaptive transmission applications, e.g.,
selective transmitter diversity or fixed power adaptive mod-
ulation, it is not necessary to feed back the actual fading
coefficient. It is sufficient to send to the transmitter just
the antenna selection or modulation index bits derived from
the estimates of predicted values at the receiver. However,
feedback of complex fading coefficients is required for some

adaptive transmission applications and/or if the prediction is
performed at the transmitter [15].) For AOFDM, the CSI is
required for all subcarriers, resulting in high feedback load
that increases for fast vehicle speeds due to high feedback rate.
Hence feedback load should be minimized while providing
sufficient information for the transmitter to predict the future
CSI accurately. In this paper, we investigate reduction of the
feedback load for closed loop systems by using the correlation
induced by the multipath fading between the subcarriers.

The remainder of this paper is organized as follows. Section
II introduces the channel model and statistics used to perform
and test our prediction algorithms. In Section III, we first
briefly describe the adaptive OFDM system, and then present
the theoretical MMSE long-range prediction and robust pre-
diction methods that do not require the knowledge of the
channel statistics for the AOFDM system. In Section IV, robust
adaptive bit and power loading for mismatched channel infor-
mation is investigated and the reduced feedback techniques
are explored. Computer simulation results are presented to
demonstrate the effectiveness of the proposed system.

II. PROPAGATION AND CHANNEL MODEL STATISTICS

A. Channel Statistics

The equivalent lowpass complex fading coefficients at K
subcarriers, f1 < f2 < . . . < fK , where |f i − f j | ¿ the
carrier frequency fc, can be closely approximated as [21]:

c
(
f i, t

)
=

N∑
n=1

A (n) exp {j (2πfd (n) t + φi (n)} ,

i = 1, 2 . . .K (1)

In (1), for the nth path, A(n) is the (real) amplitude and
fd(n) = fc

v
c cos(θ(n)) = fdmcos(θ(n)) is the Doppler shift,

where v, c, fdm, and θ(n) is the speed of the mobile, the speed
of light, the maximum Doppler shift, and the incident angle
of the path to the direction of the mobile, respectively. The
phase difference for the nth path, φi (n)−φj(n) = 2π∆fτ(n)
where ∆f = f j − f i is the frequency separation, and τ(n) is
the excess propagation delay. Let {A, θ, τ , φ1} denote the set
{A (n) , θ (n) , τ (n) , φ1 (n) , n = 1 . . . N} that parameterizes
this channel model. While there are many reflections that
contribute to the fading signal, the number of dominant paths
is modest in practice (a dominant, or significant, reflected
component has power within ~10dB of the strongest com-
ponent) [15-17]. The c(f i, t) are distributed approximately as
a zero mean complex Gaussian random variables. Therefore,
the amplitudes |c(f i, t)| are Rayleigh distributed.

For a deterministic channel where {A, θ, τ} are known,
the temporal average correlation function (TACF) [24] can
be calculated from (1) as (2), which is found at the top
of the next page. Note that TACF does not depend on the
parameters

{
φ

1

}
. Assume {φ1(1) . . . φ1(N)} are mutually

independent random variables uniformly distributed on [0, 2π].
It can be readily shown from (1) that E{φ

1}[c(f
i, t)c∗(f j , t+

∆t)|{A, θ, π}] = TAFC in (2), where E{φ
1} denotes the

statistical expectation over {φ
1
}.
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RT (∆t, ∆f ) =
lim

T →∞
1

2T − |∆t|
Z T−|∆t|/2

−T+|∆t|/2

c
“
f i, t−∆t/2

”
c∗
“
f j , t + ∆t/2

”
dt =

NX
n=1

A (n)2 exp {−j2πfd (n) ∆t} exp {j2π∆fτ (n)}
(2)

For c(t) characterized as wide sense stationary un-
correlated scattering (WSSUS) [7], the ensemble aver-
age correlation function (EACF) for two fading sig-
nals with frequencies f i and f j with the time differ-
ence ∆t and the frequency separation ∆f = f j −
f i is defined as RE(∆t,∆f) = E[c(f i, t)c∗(f j , t +
∆t)]. Equivalently, RE(∆t,∆f) is the statistical aver-
age of the TACF over {A, θ, τ}, i.e., RE(∆t, ∆f) =
E{A,θ,τ}{E{φ

1
}[c(f i, t)c∗(f j , t + ∆t)|{A, θ, τ}]}. It can be

factored into the time-domain correlation function Rt(∆t) and
the frequency domain correlation function Rf (∆f) as [23],
[20]:

RE(∆t,∆f) = ΩRt(∆t)Rf (∆f) (3)

where Ω = E
[∣∣c (

f i, t
)∣∣2

]
is the average power of the

fading signals. (We normalize Ω to 1 throughout the paper.)
Assume θ(n) is uniformly distributed around 2π, and the
propagation delay τ(n) is exponentially distributed [21] with
the probability density function (pdf )

p (τ) =
1
σ

exp {−τ/σ} (4)

where σ is the rms delay spread [22]. Then Rt(∆t) =
J0(2πfdm∆t) is the zero order Bessel function [21] and
Rf (∆f) = 1

1+(2π∆fσ)2 + j 2π∆fσ
1+(2π∆fσ)2 . We define fdm∆t

and ∆fσ as the normalized time difference (NTD) and the
normalized frequency separation (NFS), respectively. Note
that (3) is expressed in terms of these normalized quantities.

The Jakes model [21] is widely used to model the fad-
ing channel. In this method, N equal strength multipath
components in (1) are equidistant on the unit circle, i.e.,
θ(n) = 2πn/N , and A(n) are given by the same con-
stant value for all n = 1, 2 . . . N . This model results in
fixed TACF RT (∆t, 0) since the incident angles θ(n) and
the amplitudes are fixed in (1). The function RT (∆t, 0)
approaches Rt (∆t) = J0(2πfdm∆t) as N becomes large.
(The performance analysis of the LRP for the Jakes model
is presented in [13]). In this paper, we employ a standard
modification of the Jakes model by modeling the incident
angles θ(n) as independent and uniformly distributed on
[0, 2π] instead of using fixed θ(n) = 2πn/N . Moreover,
we do not make use of approximations for large N since
spectral analysis of measured fading data strongly supports
the conjecture that the complex baseband fading process is
dominated by a moderate number of sinusoids [15-17]. We
refer to this model as the random phase model (RPM). This
model provides a more realistic environment for testing the
LRP, while maintaining low complexity. The coefficients at
different frequencies have the same parameters {A, θ}, and
propagation delay distribution is generated as in (4).

B. Physical Model
In the Jakes and the RPM models discussed above, the

parameters associated with the reflectors (the amplitudes, the

Fig. 1. Geometry of the physical modeling.

Doppler shifts and the phases) are fixed once they are chosen.
Thus, the correlation function (2) does not vary in time.
However, in real mobile radio environments, the correlation
function is time-variant and is affected by many factors such
as the number and the locations of the reflectors, vehicle speed,
carrier frequency, distance between the transmitter and the
receiver, etc. The LRP predicts the channel far ahead, and
requires large observation interval and memory span [15].
Therefore, the performance of this algorithm is affected by
the variation in time of the parameters associated with the
reflectors. In practice, this variation has to be taken into
account in the estimation of the correlation function. Thus,
realistic non-stationary modeling is necessary.

We have proposed a realistic physical model based upon
the method of images combined with diffraction in [15], [16],
[17]. This model can provide physical insights into the nature
of the signal fading that affects the performance of the LRP
algorithm. The geometry for generating the model data set
used in this paper is shown in Fig. 1. The reflecting objects
are arranged approximately to the side of (group A) and in
front of (group B) the mobile. The fading amplitude is shown
in Fig. 2. The carrier frequency is 900MHz, the maximum
Doppler shift is 100Hz, and the sampling rate is 500Hz. The
CSI is dominated by the reflectors that are closer. This is group
A for the first ~600 samples, and group B thereafter. Taking
into account the direction of the mobile, away from group
A and towards group B, we expect that the dominant paths
change from group A reflections to group B reflections, and
the Doppler shifts of the dominant paths will rapidly change
in both magnitude and sign in the vicinity of sample 600. This
is evident in Fig. 2 as a faster fading rate when the Doppler
shifts are larger, for points >600, when group B reflections
dominate. We use this transition interval to test the robustness
of the LRP to parameter variation in Sections III and IV.
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Fig. 2. Physical model data set.

III. SYSTEM MODEL AND LONG RANGE PREDICTION

A. Adaptive OFDM System Model

Consider an OFDM signal with K subcarriers, symbol
(block) duration Ts, and adjacent subcarrier (tone) spacing
∆fs. Assume the channel bandwidth of each subcarrier is
much smaller than the coherence bandwidth and the channel
state information does not change within one OFDM symbol
duration Ts, but varies from symbol to symbol. The equivalent
complex channel gain Hs[n, k] at nth symbol block and kth

subcarrier can be modeled as the samples of the time-varying
frequency selective channel in (1) with the time domain and
frequency domain sampling interval Ts and ∆fs. From (2,
3), the temporal and ensemble channel correlation functions
for the OFDM symbols with block difference ∆n and tone
spacing ∆k can be expressed as RT (∆nTs, ∆k∆fs) and
RE(∆nTs, ∆k∆fs), respectively.

The uncoded AOFDM system aided by the LRP and re-
duced feedback considered in this paper is depicted in Fig.
3. The input data is allocated to the subcarriers according to
the CSI fed back from the receiver. The LRP is employed
to enhance the CSI accuracy. Let a[n, k] denote the complex
baseband symbols at nth block and kth tone. The received
signal after OFDM demodulation can be expressed:

X [n, k] = Hs [n, k] a [n, k] + w [n, k] (5)

where w[n, k] is complex additive white Gaussian noise with
variance E[|w[n, k]|2] = N0. Then frequency domain coherent
channel estimation of the complex symbols associated with
each of the K subcarriers is employed. A 2-D MMSE channel
estimator was proposed in [23]. Let

H̃s [n, k] = Hs [n, k] + w̃ [n, k] (6)

denote an accurate MMSE estimate of the CSI, where w̃ [n, k]
is the estimation error modeled as white Gaussian noise
with power spectrum Ñ0. We define the observation SNR
as E[|Hs[n, k]|2]/Ñ0. Due to the correlated subcarriers, the
estimated CSI H̃ [n, k] , k = 1 . . .K, can be reduced and fed
back to the long-range predictor at the transmitter at low rate.
Alternatively, the predictor can be placed at the receiver be-
tween the channel estimation and the reduced feedback blocks

a[n,k]

H[n,k]
∼

Fig. 3. Block diagram of an adaptive OFDM system.

depending on the implementation issues such as complexity,
performance and costs. The reduced feedback methods will
be discussed in Section IV. In this section, we assume that
estimates of all subcarriers H̃ [n, k] , k = 1 . . .K are available
for the following long-range prediction algorithm.

B. MMSE Long Range Prediction

We derive the linear MMSE-based channel predictor for a
multicarrier fading channel (1) where {A, θ, τ} are fixed and
the components of {φ

1
} are mutually independent random

variables uniformly distributed on [0, 2π]. One important pa-
rameter for the LRP is the sampling rate. For narrow band
single carrier systems, the sampling rate of the LRP is much
lower than the symbol rate [15]. While the symbol interval
in OFDM systems is longer, it is still beneficial to choose
the sampling rate of the LRP lower than the symbol rate. Let
H̃ [n, k] denote the estimated CSI (as in (6)) with a sample
interval Tp (an integer multiple of the OFDM symbol interval
Ts). The channel predictor for the CSI at the kth tone and the
nth sample based on the p previously observed samples at K
subcarriers can be constructed by:

Ĥ[n, k] =
p∑

j=1

K∑
m=1

d∗(j, m)H̃[n− j, m] (7)

Provided that the correlation function (2) is known, the optimal
filter coefficients do(j,m) that minimize the conditional MSE

E{φ
1
}

[∣∣∣
(
H [n, k]− Ĥ [n, k]

)∣∣∣
2

|{A, θ, τ}
]

can be obtained

by using the orthogonality principle [24]. The resulting MMSE
Jmin is given by

Jmin = 1− tr
[
DHG

]
(8)

where tr[•] is the trace of a matrix, the subscript H is
Hermitian transpose and the matrix

D =




d0 (1, 1) d0 (1, 2) · · · d0 (1,K)
d0 (2, 1) · · ·

· · · ·
· · · ·

d0 (p, 1) · · d0 (p, K)




and

G =




r (1, k − 1) r (1, k − 2) · · · r (1, k −K)
r (2, k − 1) · · ·

· · · ·
· · · ·

r (p, k − 1) · · r (p, k −K)
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where r(∆n,∆k) = RT (∆nTp, ∆k∆fs). This result serves
as a theoretical foundation for our prediction problem and
will be used in the performance analysis. The MMSE Jmin

depends on the scattering configuration {A, θ, τ} and number
of waves N of the fading process. In general, the performance
of our prediction method degrades as N increases [13, 20]. As
N becomes large, the TACF (2) for the Jakes model and for the
RPM approaches EACF (3) [21]. Therefore, Jmin is upper-
bounded by (8) with r(∆n, ∆k) ≈ Rt(∆nTp)Rf (∆k∆fs).
Moreover, the MMSE prediction given past observations is
achieved by the proposed linear MMSE algorithm due to the
assumption of joint Gaussian distribution of the observations
and future samples [25].

In the linear prediction algorithm (7), the optimum MMSE
is achieved by observing previous symbols of multiple sub-
carriers. However, this method is very complex in practice.
Moreover, we have found that if the SNR of the observed
feedback samples is high, the improvement in the prediction
accuracy when non-adjacent subcarriers’ observations are used
relative to utilizing just past samples of desired and adjacent
subcarriers is negligible [20]. In fact, for the asymptotic case
when the TAFC approaches the EACF factorization (3), and
when the CSI is noiseless, it is sufficient to use just the
past samples of the desired subcarrier to achieve the opti-
mal MMSE performance [20]. Thus, we propose to simplify
the algorithm by using only previously observed samples at
subcarrier k to predict the CSI H[n, k]:

Ĥ[n, k] =
p∑

j=1

d∗j (n) Ĥ (n− j, k) k = 1, 2, . . .K (9)

Adjacent subcarriers can be easily incorporated to reduce
the noise level at the cost of the system complexity. For
the channel model (1), the same coefficient vector d(n) =
[d1d2 . . . dp]T in (9) can be employed for each subcarrier,
since the MMSE solution is determined by TACF in (2)
with ∆f = 0. (More specifically, it was shown in [12] that
for single carrier prediction, the coefficients dj depend only
on the Doppler shifts for that carrier. We assume the total
bandwidth is sufficiently small to model the Doppler shifts as
fixed in (1), although in practice the carrier dependency be-
comes more significant for large frequency separations.) Since
the filter coefficient vector d(n) are assumed tone-invariant,
significantly reduced computational complexity and greatly
improved tracking ability can be achieved for the adaptive
prediction methods discussed in the following sections because
all feedback observations can be used jointly to update the
coefficients. We call this method simplified multiple carriers
prediction (SMCP). Note that this tone invariability can be
generalized to the case when observation of several adjacent
carriers are used provided that the same number of adjacent
carriers is employed on each side of the desired carrier [20].
This method extends to adaptive transmitter antenna diversity
systems since the channels for all antennas have the same
Doppler shifts [28].

The optimum MMSE channel prediction above relies on
the knowledge of the time and frequency domain correlation
functions (2). However, these correlation functions depend
on the particular environment and usually are unknown. In

addition, the coefficients d(n) in (9) needs to be computed
adaptively as the Doppler shifts in (1) vary with time. In the
following section, we employ the adaptive Least Mean Square
(LMS) and Recursive Least Squares (RLS) algorithms, which
do not require the knowledge of the correlation functions of
the channel, to update the prediction filter coefficients for the
OFDM system. The error between the desired response and
the predicted CSI at subcarrier k is:

e [n, k] = H [n, k]−
p∑

j=1

d∗j [n] H̃ [n− j, k] , k = 1 . . . K.

(10)
The average mean square error (AMSE) over all subcarriers
is

AMSE = J (n) =
1
K

K∑

k=1

|e [n, k]|2 (11)

This AMSE is used for updating the coefficients of the LMS
and RLS SMCP algorithms. Note that e[n, k] is the MSE
of a single carrier prediction method (9), and equation (11)
is the average MSE for all subcarriers. The subcarriers are
parameterized by the same {A, θ, τ} but different phases {φ

i
},

where {φi} = {φi (1) . . . φi (N) , i = 1 . . . K} . As the
number of subcarriers K increases, this phase vector can
be modeled as a random vector with components that are
uniformly distributed on the unit circle, and the average (11)
can be approximated as J(n) ≈ E{φ

k
}[e[n, k]2|{A, θ, τ}], the

expectation (over the random phase) of the MSE of a single
carrier predictor. Thus, it is lower bounded by the ideal single
carrier MMSE Jsmin

Jsmin = Jmin for K = 1, (12)

where Jmin is defined in (7, 8). Note that using AMSE in
SMCP, we adapt the coefficient vector d(n) jointly using the
errors for all subcarriers. As discussed below, this improves
accuracy and convergence relative to single carrier adaptive
prediction [13], [15], [17], [20]. We also observed that the
prediction algorithm is more robust to noise in the feedback
signals compared to the single carrier prediction [14], [15] for
both the LMS and RLS algorithms if the adjacent subcarriers
are employed for prediction.

Assume the first p (filter length) samples are available for
all subcarriers. Define the desired samples at time p + n as
H̃d[n] = [H̃[p+n, 1], H̃[p+n, 2], . . . , H̃[p+n,K]]T and the
input p × p data matrix, which is presented at the top of the
next page. This notation will be used in the following robust
prediction algorithms.

C. LMS and RLS Algorithms for AOFDM

The LMS algorithm uses the cost function J(n) in (11).
The equations for updating the predictor coefficients, shown in
Table 1, are derived by calculating the gradient vector ∇J(n).
From [24], the LMS learning curve depends on the step size µ
and the eigenvalue spread of the correlation matrix, which can
be determined from the TAFC (2), of the input process. The
selection of step size µ is a trade-off between the convergence
rate and the excess MSE:

Jex (n) = J (n)− Jsmin (13)
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H̃ [n] =




H̃ (p + n− 1, 1) H̃ (p + n− 1, 2) · · · H̃ (p + n− 1,K)
H̃ (p + n− 2, 1) · · ·

· · · ·
· · · ·

H̃ (n, 1) · · H̃ (n, K)




TABLE I
LMS ALGORITHM FOR OFDM CHANNEL PREDICTION

where J(n) and Jsmin are defined in (11) and (12), respec-
tively.

With the RLS algorithm, the predictor coefficients are
calculated so that they minimize the error ε[n] =∑n

i=1

∑K
k=1 λn−i|e[i, k]| where λ with 0 < λ ≤ 1 is the

forgetting factor that accounts for possible non-stationary of
the input CSI. The resulting update equation for the predictor
coefficient vector d[n] is shown in Table 2. The parameter δ in
the initialization procedure should be chosen small compared
to the variance of the data samples. We use δ = 0.01 in
our simulation. For the RLS, the excess mean square error
Jex(n) for SMCP is derived similarly to that for the single
carrier case [24]. Its learning curve, unlike LMS algorithm, is
independent of the eigenvalue spread of the input process and
decays almost linearly with nK (the convergence rate is ap-
proximately K times faster than for single carrier prediction).
For λ = 1, Jex(n) converges to zero, and for λ close to 1
and large K, the Jex(∞) ≈ Jsmin

(1−λ)p
2K . Hence for large K,

Jex(∞) ≈ 0. (While Jex(∞) ≥ 0 in our example, for small
values of K and proper choice of λ (close to 1 but not 1), it
is possible for Jex(∞) to be smaller than 0 [20] due to the
nonstationarity of the deterministic channel model (1) [29] and
the fast tracking property of the RLS algorithm.) Thus, SMCP
improves the convergence rate and the steady state MSE for
the RLS relative to the single carrier prediction [12-15].

D. Numerical Simulations

We use the RPM and the physical model to validate the
performance of the LRP for the OFDM system. To test
the performance of our prediction algorithm on the fading
channel modeled by the RPM, N = 34 is chosen and
multiple deterministic channel realizations are generated by
using independent angles {θ} and propagation delays {τ}.
We apply the LRP for each independent realization and
calculate the average AMSE (11). Furthermore, the Jsmin

TABLE II
RLS ALGORITHM FOR OFDM CHANNEL PREDICTION

(12) averaged over these independent realizations is presented
for comparison. Note that when we use the RPM, each
channel realization has different TACF. Thus, we can test the
tracking ability and the prediction accuracy (AMSE) of our
prediction algorithm in different reflecting environments. This
task cannot be accomplished using the Jakes model, where
the incident angles are fixed. The prediction filter length p in
(9) is 50. The maximum Doppler shift of 100 Hz is used in
both models. The rms delay spreads are approximately 1µs in
both channel models. To construct an OFDM symbol, assume
that the entire channel bandwidth, 800kHz, is divided into 128
subcarriers. The symbol duration is 160µs. An additional 5µs
guard interval is used to provide protection from ISI due to
channel multipath delay spread. Thus the total block length is
165µs and the subcarrier symbol rate is approximately 6KHz.
For each subcarrier, the fading signal is sampled at the low
rate of 466Hz for the LRP (the prediction range is 1/466Hz
≈ 2ms). In this paper, we assume reliable channel estimation
and high effective SNR (80 dB) of the observed CSI. While
the actual SNR of the observed samples is usually much
lower, noise reduction techniques can be employed to decrease
the estimation error greatly, and additive noise correlation in
(6) that might result from noise reduction does not affect
the accuracy of the prediction [13], [15], [23], [31], [33].
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Fig. 4. Performance of different adaptive prediction methods for the random
phase model.

Moreover, our investigation in [20] shows that degradation
due to lower effective SNR values (e.g., 50 dB) is negligible.
Therefore, accurate channel estimation assumed in this paper
is realistic and is not a limiting factor in the performance of
adaptive prediction. Interpolation is utilized to predict channel
coefficients at the subcarrier symbol rate [13-15].

Fig. 4 demonstrates the average AMSE (11) over all the
channel realizations for the SMCP method for the RPM
model. When these results are compared with the single carrier
prediction, we find that the excess mean square error for
the LMS algorithm Jex(n) (13) of these two approaches is
approximately the same given the same step size µ [20].
The MSE curve shown for µ = 0.005 corresponds to both
methods. However, the single carrier algorithm diverges for
large µ, while for the SMCP (9), µ can be chosen as large
as 0.1 without divergence, thus improving the convergence
rate. As the NFS increases, larger step size µ can be chosen,
resulting in faster convergence [20]. While the RLS has higher
computational complexity than the LMS algorithm, its learn-
ing curve and the excess MSE Jex(n) (13) are significantly
improved relative to the LMS. It is observed that the RLS
algorithm converges rapidly with almost no excess MSE for
λ = 0.9, whereas the LMS algorithm converges more slowly
with significant excess MSE relative to the RLS algorithm.
We also demonstrate the RLS algorithm for the Jakes model.
We observe that for λ = 0.9, the AMSE of the more realistic
RPM is better than that of the Jakes model.

In Fig. 5, the SMCP is explored for the physical model. It is
demonstrated that during the transition period (from samples
500 to 700 in Fig. 2), the RLS with the forgetting factor λ =
0.1 has better tracking ability than that with λ = 0.9. Hence it
is more robust to the non-stationary environment. The tracking
results for the LMS algorithm are much poorer. The actual
impact of the choice of adaptive tracking method should be
measured by the performance of adaptive transmission (the
MSE is not always indicative of this performance.) This impact
is analyzed in Section IV.

Fig. 5. Performance of different adaptive prediction methods for the physical
model.

IV. ADAPTIVE OFDM AND REDUCED FEEDBACK

A. Robust Adaptive Bit and Power Loading

In this paper, we employ channel loading optimization
under the bit rate maximization (BRM) criterion, where the
goal is to allocate the limited energy among the subcarriers
to maximize the overall bit rate subject to a target bit error
rate constraint [11]. A simplified loading method similar to
[10] (see [20] for the detailed description) is compared with
the optimal Hughes-Hartogs algorithm [8] in the presence of
imperfect CSI that results from prediction errors.

For each subcarrier we employ rectangular M (i)-QAM
modulation [26] where M(1) = 0, M(i) = 2i−1, i = 2 . . . 6.
Let ĉ denote the CSI obtained from the linear prediction
algorithm (9) and c the actual complex gain at a certain
subcarrier. Hence ĉ and c are jointly complex Gaussian and
their amplitudes â and α are both Rayleigh distributed. For
subcarrier k, let P (= E[|a[n, k]|2](5)) denote the transmitted
signal power of the complex M (i)-QAM symbol that is deter-
mined by allocation algorithm. (Note the sum of the allocated
powers for all subcarriers does not exceed the total power
constraint Ptotal). Assume each subcarrier has the same noise
power N0 (see (5)). The SNRγM(i)(= P/N0) required to
employ M (i)-QAM modulation given the predicted channel
gain â at the kth subcarrier can be found by numerical search
to meet the bit error rate constraint BERc:

BERc =
∫ ∞

0

BERM(i)

(
γM(i)x

2
)
pα|bα (x) dx (14)

where BERM(i), calculated from [26], is the bit error rate for
the M -QAM modulation on the AWGN channel, and pα|bα, the
conditional probability density function of α given α̂, is given
by [6], [20]:

p (α|α̂) =
2a

(1− ρ)Ω
I0

(
2
√

ραα̂

(1− ρ)
√

ΩΩ̂

)

exp
(
− 1

1− ρ

(
α2

Ω
+

ρα̂2

Ω

))
(15)

where the parameter ρ is the correlation coefficient between
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Fig. 6. BPS vs, ρ for different SNR for adaptive OFDM system, SNR =
Ptotal/KN0.

α2 and α̂2:

ρ =
Coν

(
α2, α̂2

)
√

V ar (α2)V ar (α̂2)
(16)

and Ω = E
{
α2

}
= 1, Ω̂ = E

{
α̂2

}
and I0 is the 0th order

modified Bessel function. Once the γM(i) are calculated for
each modulation level and each subcarrier, they are used to
implement the Hughes-Hartogs and the simplified algorithm
in the presence of imperfect CSI. The only difference in the
implementation (relative to the perfect CSI case) is that the
SNR γM(i) in (14) is used in place of the ideal SNR required
to achieve the BER with M(i)-QAM [26].

From (14) and (15), the required power to employ M -
QAM modulation is dependent on the parameters ρ and Ω̂.
Nevertheless, it can be shown that when the estimated power
Ω̂ is scaled to 1, the performance of adaptive modulation
is not affected, so throughout the paper, we employ this
normalization for simplicity, and the performance depends
only on the parameter ρ. The average bits per symbol (BPS)
vs. the correlation coefficient ρ vs. the average SNR constraint
given by Ptotal/(KN0) is shown in Fig. 6, where we assume
each subcarrier has the same prediction accuracy ρ. The BER
constraint for each subcarrier is 10−3. The correlation ρ = 1
corresponds to perfect prediction, while ρ = 0 represents
the worst case when the BPS of the adaptive modulation
converges to that of the non-adaptive M -QAM for given SNR
and bit error rate constraint BERc. It is observed that the
simplified algorithm is near-optimal when ρ is close to 1 and
has performance loss less than 0.1 BPS for ρ << 1 compared
with the optimal Hughes-Hartogs algorithm.

To reduce signaling overhead complexity and to accommo-
date the hardware constraints, we investigated the performance
of the LRP and adaptive modulation where the modulation
level remains constant over ten or even hundreds of symbols,
and block loading, where neighboring subcarriers use the same
modulation level in [20]. Furthermore, the system can be
simplified by assigning fixed power for each modulation level
as in discrete rate discrete power adaptive modulation [3].

B. Feedback Load Reduction

In addition to adaptive channel loading, many other adaptive
transmission techniques can be implemented in a wireless
OFDM system. These include adaptive coding, adaptive trans-
mitter antenna diversity and interference suppression at the
transmitter. In a closed-loop system the transmitter obtains
the CSI for this adaptive transmission from the receiver via a
feedback channel. The prediction can be performed either at
the transmitter or at the receiver, depending on the complexity
and feedback requirements. In some adaptive transmission
applications, it might be feasible to predict at the receiver and
feed back the CSI parameters derived from the predictions
(e.g., the modulation level and power for adaptive modula-
tion). In other adaptive transmission techniques (e.g., adaptive
antenna diversity), predicted channel gains are often required
at the transmitter, and thus channel gains have to be fed back,
independent of whether the prediction is accomplished at the
transmitter or receiver. This CSI is required for all subcarriers.
It is desirable to minimize this feedback load since it consumes
resources that would otherwise be used for data. At the same
time, the feedback signal should carry enough information so
the transmitter can perform reliable adaptive transmission.

In this section, we explore several methods for reduc-
ing the feedback of the OFDM signal vectors H̃ =
[H̃(n, 1) . . . H̃(n,K)] (the estimates in (6) sampled at low
rate) while insuring accurate reconstruction at the transmit-
ter. Since H̃ is modeled as Gaussian, the estimates of the
reconstructed signals are formed as linear combinations of the
signals that are fed back. The performance is measured by
the correlation coefficient ρ (16) between the reconstructed
signals and actual CSI for each subcarrier and is dependent
on the feedback density (FD) given by:

FD =
Number of fed back symbols
Total number of subcarriers

(17)

We also define the normalized feedback density (NFD) as:

NFD =
FD

normalized subcarrier frequency separation
(18)

The first reduced feedback method utilizes Karhunen-Loeve
(K-L) low rank modeling [24]. The K-L method requires the
knowledge of the eigen-vectors of the correlation matrix of the
feedback signal vector at both the transmitter and the receiver.
For the fading channel characterized as WSSUS with the
frequency domain correlation function Rf (∆f ) (3), the K×K

correlation matrix defined as R = E[H̃H̃
H

] is computed from
Rf (∆f ). Let q1, q2 . . . qK be the eigenvectors associated with
K eigenvalues (λ1 > λ2 > . . . λK) of the matrix R. The
vector H̃ can be expressed as a linear combination of these
eigenvectors as

H̃ =
K∑

i=1

νiqi (19)

The coefficients νi of the expansion are zero-mean, uncor-
related random variables defined by the inner product νi =
qi

HH̃ . From (19), we can reduce the feedback by sending
only νi for i = 1 . . .m and to approximately reconstruct H̃
at the transmitter by H̃ =

∑m
i=1 νiqi, m < K. Hence the

feedback density (17) is m/K. The reconstruction error vector
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Fig. 7. Performance comparison for different reduced feedback methods.

is defined by e = Ĥ − H̃ . It can be shown that the mean
square error is E[eHe] =

∑K
i=m+1 λi, [24], Thus, accurate

reconstruction is achieved if the eigenvalues λm+1, . . . , λK

are very small. The number of significant eigenvalues depends
on the rms delay spread, frequency separation, and the number
of the subcarriers and can be shown to be small for typical
OFDM channels.

Since computation of the basis of the K − L low rank
modeling [24] requires the knowledge of the channel cor-
relation function, we propose to utilize the discrete Fourier
basis and transform the CSI H̃ using the inverse discrete
Fourier transform (IDFT). This choice is meaningful since
the IDFT corresponds to the channel impulse response.
The K-point IDFT of the CSI H̃ is given by I(m) =
1
K

∑K
k=1 H̃(n, k) exp{j2π(k−1)/(K(m−1))}, m = 1 . . . K.

The samples I(m) are relatively small for m > τmax∆fK,
where τmax is the maximum excess delay, ∆f is the subcarrier
frequency separation and K is the total number of subcarriers.
This suggests that FD > τmax∆f is required to obtain good
performance. In OFDM channels, K is chosen much larger
than τmax∆fK (i.e. ∆f << 1/τmax) to avoid intersymbol
interference (ISI). Thus, the transformed signal I(m) can be
truncated, fed back to the transmitter and reconstructed by the
DFT.

Alternatively, we can directly feed a subset of the CSI
samples H̃ back to the transmitter without any transformation.
The feedback signals are sampled uniformly over the entire
frequency band. The original signal can be reconstructed by
interpolation or using the MMSE criterion if the correlation
functions are known. This method results in different accuracy
for each subcarrier and increases the complexity of the bit and
power allocation. We call this method direct reduced feedback
with linear interpolation.

For all reduced feedback methods, the performance de-
pends on the rms delay spread and the subcarrier frequency
separation. Furthermore, it will affect the LRP accuracy and
hence the performance of the adaptive loading algorithm.
Therefore, there is a tradeoff between the feedback load and
the performance of the AOFDM.

Fig. 8. Comparison of average BPS performance for adaptive OFDM aided
by different prediction methods for the RPM and physical model.

C. Numerical Simulation for AOFDM and Reduced Feedback

We use the RPM and the physical model to validate the
performance of our AOFDM system aided by the LRP with
reduced feedback. The target BER for the adaptive OFDM
system is 10−3. The system parameters are described in
Section III. The performance of the prediction algorithm
using reduced feedback methods for different SNR constraint
is shown in Fig. 7 for the RPM. The signals are reduced
by several methods and fed back to the transmitter. The
transmitter predicts the next OFDM channel coefficient vector,
estimates the prediction accuracy ρ, and performs adaptive bit
and power allocation. It is shown that for the KL method,
performance is near optimal when the NFD (18) is larger than
6. This implies from (18) that only 4 symbols need to be
fed back for a 128-subcarrier OFDM system with normalized
subcarrier frequency separation 0.005. For the practical IDFT
method, the performance loss is less than 0.5 BPS at NFD =
6 as opposed to 1 BPS loss for the direct reduced feedback
method with linear interpolation “RLS+Linear intp” curve).
The choice of the feedback density provides a trade-off
between the feedback load and the prediction accuracy, and
hence the transmission rate.

The average BPS of the AOFDM for different prediction
algorithms for the RPM and physical channel models is plotted
in Fig. 8. Perfect feedback is assumed. Note that the spectral
efficiency will be slightly less than the average BPS due
to the guard interval used to eliminate the ISI. Comparison
reveals that the RLS has better performance than the LMS
algorithm for the RPM and non-stationary physical model.
The performance of the RLS algorithm for the RPM is near-
optimal (not shown), whereas the loss is less than 0.5 dB for
the physical model compared to the perfect knowledge of CSI.
Note that although we employ high effective observation SNR
= 80 dB for our simulation, we observed the achievable BPS
is approximately the same as long as the effective observation
SNR > 40 dB. The performance of the AOFDM using the
outdated CSI samples (1 ms delay) without prediction for the
RPM is also shown in Fig. 8. Calculation of thresholds for
this case was studied in [6]. We found that even very small
delay causes significant loss of the bit rate for fast vehicle



10 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 5, NO. 10, OCTOBER 2006

speeds when accurate LRP is not utilized. For example, the
delay of 1ms for fdm =100Hz corresponds to the correlation
coefficient ρ = 0.9 in (16). This results in the bit rate loss
about 1.5 bits/symbol for the target BER = 10−3 and the
SNR per symbol = 25 dB assuming stationary Rayleigh fading
channel, while prediction results in near-optimal BPS for non-
stationary channels.

V. CONCLUSIONS

A mobile radio AOFDM system aided by the long-range
prediction and reduced feedback was investigated. A realistic
physical model and a stationary random phase model were
employed to validate the prediction performance. The simula-
tion results demonstrated that accurate long range prediction
is required to achieve the potential of adaptive OFDM system
for fast vehicle speeds and realistic delays. Specifically, the
RLS LRP that uses combined observations of all carriers was
shown to enable adaptive loading for the physical model and
practical OFDM parameters. Finally, several methods were
developed to reduce the feedback load, and it was shown that
the IDFT method offers significant feedback load reduction
while maintaining near-optimal spectral efficiency.
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