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Abstract— Adaptive transmission techniques, such as adaptive 

modulation and coding, adaptive power control, adaptive 
transmitter antenna diversity, etc., generally require precise 
channel estimation and feedback of channel state information 
(CSI). For fast vehicle speeds, reliable adaptive transmission also 
requires long range prediction (LRP) of future CSI since the 
channel conditions are rapidly time-variant. In this paper, we 
propose to use past channel observations of one carrier to predict 
future CSI and perform adaptive modulation without feedback 
for another correlated carrier. We derive the minimum mean-
square-error (MMSE) long range channel prediction that utilizes 
the time and frequency domain correlation function of the 
Rayleigh fading channel. An adaptive MMSE prediction method 
is also proposed. Statistical model of the prediction error that 
depends on the frequency and time correlation is developed and is 
used in the design of reliable adaptive modulation methods. We 
use a standard stationary fading channel model (Jakes model) and 
a novel physical channel model to test our algorithm. Significant 
gains relative to non-adaptive techniques are demonstrated for 
sufficiently correlated channels and realistic prediction range. 
 

Index Terms—Adaptive modulation, multipath fading, fading 
channel prediction, physical channel modeling, multiple carriers. 
 

I. INTRODUCTION 
IGH speed wireless communications require robust 
channel estimation and adaptive transmission to satisfy 

the tremendous growth in demand for capacity. The idea of 
adaptive transmission [1−4] is to vary the transmission 
parameters according to the instantaneous fading channel 
power without sacrificing the bit-error rate (BER). For 
example, adaptive modulation methods can provide higher bit 
rates relative to conventional signaling by transmitting at high 
rate under favorable channel conditions, and reducing the 
throughput as the channel degrades. These adaptive 
modulation techniques depend on accurate channel state 
information (CSI) that can be acquired from different sources. 
If the communication between the two stations is bi-direction 
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and the channel can be considered reciprocal, as, for example, 
in time division duplex (TDD) systems, then each station can 
estimate the channel quality on the basis of the received 
symbols and adapt the parameters to this estimation. This is 
called open-loop adaptation [5]. If the channel is not 
reciprocal, the receiver has to estimate channel quality from 
feedback resulting in closed-loop adaptation. The feedback 
load consumes power and bandwidth, and the fed back CSI 
needs to be quantized resulting in degraded performance. Note 
that for many adaptive transmission applications (e.g., 
selective transmitter diversity or adaptive modulation [9]), it is 
not necessary to feed back the actual fading coefficient. It is 
sufficient to send to the transmitter just the antenna selection 
or modulation index bits derived from the estimates of 
predicted values at the receiver. The feedback delay, overhead, 
channel estimation and CSI quantization errors, and processing 
delay degrade the performance of adaptive modulation, 
especially in rapidly time variant fading. Even in open-loop 
channels, current CSI is not sufficient since future channel 
conditions need to be known to adapt transmission parameters. 
To realize the potential of adaptive transmission methods, the 
channel variations have to be reliably predicted at least several 
milliseconds ahead. 

Recently, a novel adaptive long-range prediction (LRP) 
method was proposed in [6−9]. This algorithm employs an 
autoregressive (AR) model to characterize the fading channel 
and computes the minimum mean-square-error (MMSE) 
estimate of a future fading coefficient based on a number of 
past observations. The advantage of this algorithm relative to 
conventional methods is due to its low sampling rate (on the 
order of twice the maximum Doppler shift and much lower 
than the data rate), which results in longer memory span and 
further prediction into the future for a fixed filter length. The 
low sampling rate also results in reduced feedback rate. 

In this paper and [14,18], we extend the long-range 
prediction algorithm into frequency domain. In particular, we 
concentrate on the scenario where we observe a received 
uplink signal at the carrier frequency f 1  and attempt to predict 
the downlink signal at the carrier frequency f 2  without 
feedback from the mobile. Alternatively, a signal at frequency 
f 1  can be fed back and a signal at adjacent frequency f 2  is 
predicted without feedback. To accomplish this prediction, the 
predicted samples must be sufficiently correlated with the 
observations in both time and frequency. This technique can 
be applied in correlated uplink and downlink channels as in 
Frequency Division Duplex (FDD) systems, in orthogonal 

Reliable Adaptive Modulation Aided by 
Observations of Another Fading Channel 

Tung-Sheng Yang, Alexandra Duel-Hallen, and Hans Hallen 

H



102-0543 2

frequency division multiplexing (OFDM) systems (where 
narrow correlated sub-channels are employed) or other 
wideband systems to reduce feedback and overhead 
requirements. 

The prediction accuracy of the aforementioned algorithm is 
determined by the rate of change of amplitude, frequency and 
phase of each path [6,9,12,17]. However, the standard Jakes 
channel model [10] or a stationary random process description 
does not capture the variation of these parameters. To validate 
the LRP algorithm, a novel physical channel modeling based 
on the method of images and augmented with diffraction is 
proposed in [9,12,17]. This physical model can generate non-
stationary datasets to test both the LRP and its application in 
adaptive transmission scheme. It is demonstrated in [9,12,17] 
that this physical model generates datasets that closely 
resemble measured data, and results of the LRP for the 
physical model and measured data are similar, and differ 
significantly from those produced for the Jakes model. Thus, 
we have demonstrated that the proposed physical model is 
realistic. In addition, this model’s insights allow classification 
of scenarios into typical and challenging cases for testing the 
algorithm. These scenarios are more difficult to identify with 
the measured data. In particular, in this paper, we use the 
physical model to examine the dependency of the correlation 
between two different carrier frequencies on the variation of 
the root mean square (rms) delay spread and to investigate the 
limits on the adaptation rate. Thus, the physical model allows 
us to test robustness and to determine practical constraints of 
the proposed adaptive transmission methods. 

The remainder of this paper is organized as follows. In 
section II, we present the system model and describe the 
theoretical MMSE long-range prediction, a robust prediction 
method and the statistical model of the prediction error. In 
section III, the adaptive modulation scheme aided by the long-
range prediction is discussed. Finally, section IV presents 
computer simulation results to demonstrate the prediction 
range in frequency domain. In this section, we extend the 
physical model to accommodate multiple carrier frequencies 
and use it to test the proposed channel prediction algorithm. 
We use this model to examine sensitivity of adaptive 
modulation performance to the variation of rms delay spread 
and identify typical and challenging situations encountered in 
practice. 
 

II. CHANNEL STATISTICS AND SYSTEM MODEL 

A. Statistics of Mobile Radio Channel 
The statistics of fading signals received at correlated carriers 

are discussed in [10]. The equivalent lowpass complex fading 
coefficients at two frequencies f 1  and f 2  can be expressed as: 
 

 c(f i ,t) = ∑
n=1

N
 An exp{j(2πfnt+φin} i = 1,2 (1) 

 
where for the nth path, A n is the (real) amplitude and f n is the 

Doppler shift. The phase difference of the nth path 
φ1n − φ2n= 2 π∆fTn where ∆f = f 2 − f 1  is the frequency 
separation, and Tn is the excess propagation delay. For large 
N, c(f i ,t) is distributed approximately as a zero mean complex 
Gaussian random variable. (We assume E[|c(f i , t)|2] = 1.) 
Hence the amplitudes α(f 1 ,t) = |c(f 1 ,t)| and α(f 2 ,t) = |c(f 2 ,t)| 
are both Rayleigh distributed. Assume angular distribution of 
the incident power is uniform between [0,2π], horizontal 
directivity pattern of the receiving antenna is 1, and the 
propagation delay Tn is exponentially distributed [10] with the 
probability density function (pdf): 
 

 p(T) =
1
σexp{−

T
σ} (2) 

 
where σ is a measure (rms delay spread [11]) of the time delay 
spread. The cross-correlation of the two fading signals with the 
time difference τ = |t1−t2|, maximum Doppler shift fdm and the 
frequency separation ∆f = f 2 − f 1  can be derived as [15]: 
 
 R(τ, ∆f) = E[c(f 1 ,t) c *(f 2 ,t+τ)] = R t(τ) R f(∆f) (3) 
 
where R t(τ)=J0(2πfdmτ) is the zero order Bessel function and 

R f(∆f) =
1

1+(2π∆fσ)2 + j
2π∆fσ

1+(2π∆fσ)2. Define ∆fσ as the 

normalized frequency separation. The cross-correlation (3) vs. 
∆fσ for τ = 0 is plotted in Fig. 1. We also plotted the numerical 
cross-correlation of generated fading signals for comparison. 
To generate the signals, c(f 1 ,t) was created first using the 
Jakes model [10]. In this paper, we employ the 9 oscillators 
Jakes model with the maximum Doppler shift fdm= 100Hz. 
Then c(f 2 ,t) was generated from c(f 1 ,t) using the same 
parameters except phase shifts as in (1). Multiple experiments 
were performed using independent realization of propagation 
delay Tn according to (2) and the ensemble average of cross-
correlation was computed. Using this fading model and the 
non-stationary physical model employed in Section IV, we 
characterize the capability of the proposed method to enable 
adaptive modulation. 

B. System Model and MMSE Long Range Prediction 
The discrete-time system model is illustrated in Fig. 2. The 
frequency of observed CSI is f 1  and the frequency of 
transmitted signal is f 2 . Let c(f n ,i), n = 1,2, be samples of the 
fading signal c(f n ,t) at the sampling interval Ts. Assume 
stationary and ergodic time-varying complex channel gain 
sequence α(f n ,i) = | c(f n ,i) | with distribution pα(x). The linear 
MMSE one-step prediction of the future channel sample 
c(f 2

,n) at frequency f 2  based on p previously observed 
samples c(f 1 ,n−j) at frequency f1 is given by: 
 

 c^(f 2 ,n) =∑
j=1

p
djc(f 1 ,n−j) (4) 

 
The optimal coefficients dj are determined as: 
 
 d = R−1r (5) 
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where d = (d1

…dp)T. R is the autocorrelation matrix (p×p) with 
coefficients R i j = E[c*(f 1 ,n−i) c (f 1 ,n−j)] and r is the 
autocorrelation vector (p×1) with coefficients rj = 
E[c *(f 1 ,n−j)c(f 2 ,n) ]. The resulting MMSE is given by: 
 

 E[|e(n)|2] = E[|c(f 2 ,n) − c^(f 2 ,n)|2] = 1−∑
j=1

p
dj

*rj (6) 

 
In practice, the samples c(f 1 ,n) are observed in the presence of 
additive white Gaussian noise (AWGN) z(i) with power 
spectrum density (PSD) N0. Equations (4−6) can be easily 
modified to include noisy observations [7]. As p increases, the 
MMSE saturation level is approached. With the knowledge of 
the cross-correlation function (3), we can derive the closed 
form expression of MMSE for p = ∞ and one-step prediction. 
Let r(k) be the autocorrelation of the noisy fading channel 
samples r(k) = E[(c(f 1 ,n−k) + z(n−k)) (c(f 1 ,n) + z(n))*] = 
Rn(k) + δ(k)N0, where Rn(k) = E [c(f 1 ,n−k) c*(f 1 ,n)] = Rt 
(kTs) is the discrete time autocorrelation function of the fading 
channel. Since r(k) is a correlation sequence, it can be 

represented as r(k) = ∑
j=−∞

0
r−(j) r+(k−j) for all k, where r−(k) and 

r+(k) are the sequences that satisfy r−(k) = 0 when k>0 and 
r+(k) = 0 when k<0. From [15,16], d(z), the Z−transform of the 

filter d(n), can be derived as d(z) = Rf(∆f) [z − 
1

 (rz +(z*))* 

r+(0)]*z], where rz
+(•) is the Z−transform of r+(k). Once the 

filter coefficients are known, we can calculate the MMSE in 
(6) as MMSE = Rn(0) – b0 ,where b0 is the power of predicted 
signal c^(f 2 ,n) and can be derived as b0 = |Rf(∆f)|2 [rn(0) – 
rn

+(0) 2 ]. Hence, the MMSE can be expressed as [15,16]: 
 
 MMSE=Rn(0)−|Rf(∆f)|2[Rn(0)−r+(0)2+N0] (7) 
 

where r +(0)2 = exp{ 
1

2π ⌡⌠
-π

π

ln[Rw(w)+N0]dw }, and Rw (w) = 

∑
n=−∞

∞
Rn(n)exp{−jwn} is the folded power spectrum of the 

channel. In Fig. 3, the theoretical MMSE of one-step 
prediction (7) is plotted vs. normalized frequency separation 
∆fσ for different values of the signal-to-noise ratio (SNR). The 
sampling rate fs = 5fdm is chosen since it results in near optimal 
performance for LRP [7]. The prediction range is 0.2/fdm 
seconds. We also compare the MMSE of the system with filter 
order p = 100 (see (4)). We found that for p =100, the MMSE 
approaches the optimal case (p = ∞) for fs = 5fdm. Throughout 
the paper, we employ p = 100 and the sampling rate of 500Hz 
assuming the maximum Doppler shift of 100Hz. The 
observation interval of 100 samples is used to estimate the 
autocorrelation function in the algorithm above and to achieve 
convergence in the adaptive method described below. The 

SNR in the observations is chosen as 80dB. In practice, noise-
reduction techniques can be employed to reduce the noise 
present in the observations [7,9]. 

From the linear prediction algorithm (4), the predicted 
fading signal c^ (f 2 ,n) is a zero-mean complex Gaussian 
random variable. Later in the paper, we employ other Gaussian 
estimates. Suppose α = α(f 2 ,t) is the actual fading amplitude, 
and α^  is the amplitude of a zero mean complex Gaussian 
estimate correlated with c(f 2 ,t). Thus, the pdf of α^  is  
 
 p(α^ )=(2α^ /Ω^ ) exp(−α^ 2/Ω^ )  (8) 
 
and the conditional pdf of α given α^  is Rician given by[4,8]: 
 
p(α |α^ ) = p(α,α^ ) / p(α^ ) =  

 
2α

(1−ρ)Ω  I0(
2 ραα^

(1−ρ) ΩΩ^
) exp(−

1
1−ρ(

α2

Ω  + 
ρα^ 2

 Ω^
)). (9) 

 

where the correlation coefficient ρ =
Cov(α2,α^ 2)

Var(α2)Var(α^ 2)
, 0 ≤ ρ ≤ 

1, Ω = E{α2} = 1, Ω^ = E{α^ 2}, and I0 is the 0th order modified 
Bessel function. This conditional distribution will be used in 
the selection of modulation parameters in section III. 

C. Robust Long Range Prediction 
If the channel statistics, such as the time and frequency 

domain correlation, are known, the optimum MMSE channel 
prediction can be employed as in (4−5). However, as the 
Doppler shifts in (1) vary, the model coefficients need to be 
updated continuously based on the observations. Since we are 
not able to observe the fading coefficients at frequency f 2 , we 
modify our approach as follows. First, we predict future 
channel coefficient c(f 1 ,n) and then use the frequency 
correlation function to select the transmitter parameters at f 2 . 
The predicted CSI at f 1  are given by: 
 

 c^(f 1 ,n) =∑
j=1

p
gj

* (n)c(f 1 ,n−j) (10) 

 
The coefficients gj(n) are determined using the Least Mean 
Square (LMS) adaptive tracking method: 
 
 gj(n+1) = gj(n) + µεn

*c^(f 1 ,n−j) (11) 
 
where µ is the step size and εn = c(f 1 ,n) − c^(f 1 ,n). This 
adaptive tracking can be performed since the observations at 
frequency f 1  are available at the transmitter [7,9]. The 
recursive least-squares (RLS) algorithm can also be used to 
improve accuracy and reduce the observation interval [12,17]. 
The coefficients c^(f 1 ,n) are interpolated to obtain predictions 
at the symbol rate at frequency f1 [6]. 

Once c^(f 1 ,n) is found, the adaptive modulation parameters 
for transmitting at f 2  at time n are selected. (Note that c^(f 2 ,n) 
is not predicted directly). As explained in section III, this 
procedure depends on the pdf of the α(f 2 ,n) given α^ (f 1 ,n), If 
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we assume perfect CSI at frequency f1 for sample n, this 
conditional pdf is determined by (9) with Ω = Ω^ = 1  and  
 
 ρ = 1/(1+(2π∆fσ)2) (12) 
 
In practice, this pdf is computed as in (9) using empirical 
estimates of Ω^  and ρ and depends on the accuracy of 
prediction in (10). It can be shown that when the estimates c^

(f 1 ,n) are scaled so that Ω^ =1, the performance of adaptive 
modulation is not affected. Hence throughout the paper, Ω^  is 
normalized to 1 for simplicity, and the performance depends 
only on the correlation coefficient ρ. The adaptation of ρ to the 
variation of the rms delay spread is discussed in section IV. 
 

III. ADAPTIVE TRANSMISSION AIDED BY LONG RANGE 
PREDICTION 

In this paper, we employ variable rate and variable power 
square multilevel quadrature amplitude modulation (M−QAM) 
signal constellations due to their inherent spectral efficiency 
and ease of implementation [1,13]. First, consider fixed power 
discrete rate method. Given fixed transmitter power per 
symbol Es (or average SNR level γ− = Es/N0) and a target bit 
error rate (BERtg), we adjust the modulation level M according 
to the instantaneous predicted channel gain in (10). Assume α^  
is the predicted channel gain at carrier f 1  and α is the actual 
gain at frequency f 2 . The BER bound, i.e. BERM(i)*(γ− ,α^ ), can 
be obtained as [8]: 
 

 BERM(i)*(γ− ,α^ ) =
⌡⌠
0

∞
BERM(i)(γ

−
x

2)pα|α̂(x) dx  (13) 

 
where pα|α̂(x)  is described by (9) and BERM(i) is calculated 
from the BER bound of MQAM for the AWGN channel [1]: 
 
 BERM(i)(γ) ≤ 0.2exp(−1.5γ/(M(i) − 1)) M(i)≥4 (14) 

BERM(1)(γ) = Q( 2γ), 
 
where γ is the instantaneous signal-to-noise ratio per symbol. 
(In a related technique in [4], noiseless outdated CSI is 
assumed available at the transmitter, and the expected bit error 
rate is calculated based on a conditional Rician distribution of 
the current channel amplitude.) 

The thresholds αi, i = 1…4 are chosen as follows. When the 
predicted channel gain α^  satisfies: αi+1 ≥ α^ ≥ αi, M(i)−QAM is 
employed, where M(1) = 2, M(i) = 22(i−1), i = 2…4, (α5 = ∞). 
The threshold αi is the α^  in (13) for which the bound 
BERM(i)*(γ− ,αi)  = BERtg. The average BER of this fixed 
power discrete rate adaptive modulation is lower than the 
BERtg since the upper bound (14) is used and BERM(i)*(γ− , α^ )  
< BERtg when α^  does not take on a threshold value. Hence we 
utilize a power control policy to reduce the power 

consumption while maintaining the target BER. Once the 
modulation level M is decided for a particular α^ , a SNR level γ^ 
can be found by numerical search to maintain the target BER 
from (13). Note that γ^ is less than or equal to γ− . A similar 
power control method was proposed in [4]. 

The average bit per symbol (BPS) R^ ada for both fixed and 
variable power methods is: 
 

 R^ ada =∑
i=1

4
log2Mi ⌡⌠

αi

αi+1
pα ̂(x)dx, (15) 

 
where the pdf of predicted amplitude pα̂(x) is given by (8). 
This rate also gives the spectral efficiency assuming the ideal 
Nyquist data pulse. For the power control method above, the 
average signal to noise ratio γavg is 
 

 γavg =
⌡⌠
0

∞
 γ^ (x)pα̂(x)dx. (16) 

 
We plot the BPS (15) vs. the correlation coefficient ρ in (9) 
for different SNR computed from (16) with BERtg = 10−3 in 
Fig.4. The correlation ρ = 1 corresponds to perfect prediction, 
while ρ = 0 represents the worst case when the BPS of the 
adaptive modulation converges to that of the non-adaptive 
M−QAM for given SNR and BERtg. 

The power control method above involves continuously 
varying transmitter power. It is possible to simplify it by 
associating each modulation level with constant transmitter 
power. This method is called discrete rate discrete power and 
was introduced for adaptive modulation with perfect CSI in 
[1]. For perfect CSI, the continuous power control policy 
achieves about 3dB gain relative to the fixed power discrete 
rate adaptive modulation, and the discrete rate discrete power 
method has power loss of less than 2dB relative to the 
continuous power discrete rate transmission scheme (see also 
[1]). 

 

IV. SIMULATION RESULTS AND PERFORMANCE ANALYSIS 
We use the Jakes model and our physical model to validate 

the performance of the continuous power discrete rate adaptive 
M−QAM aided by the LRP. The maximum Doppler shift of 
100 Hz is used in both models. The target BER = 10−3. The 
fading signal is sampled at the rate of 500Hz for the LRP. The 
observation interval is 100 samples, the SNR in the 
observations is 80dB, the symbol rate is 25ksymbol/s, and the 
modulation-switching rate is the same as the symbol rate. 
Interpolation is utilized to predict the channel coefficients at 
the symbol rate. The prediction range is 2ms. The physical 
model in [9,12] is extended to include multiple frequencies 
[17]. The scenario for the physical model is shown in Fig.5. 
The reflectors are arranged to provide an approximately 
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exponential distribution of excess delay with the rms delay 
spread σ ≈ 1µs. 

In Fig. 6 we plot BPS vs. normalized frequency separation 
∆fσ for the ideal (non-adaptive) MMSE filter (4-5) and the 
robust method using the LMS algorithm (10-11) with the step 
size 0.005. The parameters in (9) are estimated during the 
observation interval for both data sets and are used throughout 
the transmission. For example, for ∆f = 0, the estimated 
ρ = 0.983 for the Jakes model and ρ = 0.965 for the physical 
model. The bit rate loss is less than half a bit for non-stationary 
data generated by the physical model relative to the stationary 
case. We also investigated the BPS under the assumption that 
prediction is perfect at frequency f 1 . We observe that the 
performance of the robust algorithm is very close to this ideal 
case as well as to the performance of the ideal MMSE 
algorithm. This is consistent with the results in [8] where it is 
shown that when observations and the predicted samples are at 
the same frequency, performance of adaptive modulation aided 
by robust (adaptive) LRP closely approximates the ideal 
performance with perfect CSI. Hence the robust method is 
near-optimal and has the ability to adapt transmission 
parameters to the time-variant channel conditions. Moreover, 
for given σ, the theoretical value of the parameter ρ in (12) can 
be utilized in the selection of thresholds when robust 
prediction is used. 

The performance of the adaptive modulation using the 
outdated CSI for the Rayleigh fading channel with the 
correlation function (3) is also shown in Fig.6. To alleviate the 
mismatch of the delayed and future CSI, a novel approach to 
calculate thresholds based on the delayed CSI was studied in 
[4]. A similar method is employed here. A single observation 
c(f 1 ,n−1) is used instead of the estimate c^(f 1 ,n)  in (10) to 
compute the modulation parameters at frequency f 2 . We found 
that even very small delay causes significant loss of the bit rate 
for fast vehicle speeds when accurate long range prediction is 
not utilized. For example, for ∆fσ=0 and τ = 2ms, the loss is 1 
to 2 BPS. Thus, accurate LRP is required to achieve the bit 
rate gain of adaptive modulation for fast vehicle speeds and 
realistic delays. 

Fig.6 also shows that adaptive modulation is primarily 
beneficial when the normalized frequency separation ∆fσ does 
not significantly exceed 0.1. For example, for ∆fσ = 0.1, about 
17dB is required to obtain 1 BPS for adaptive M-QAM as 
opposed to 24dB for non-adaptive signaling (BPSK). As ∆fσ 
approaches 0.4, the bit rate of adaptive modulation 
approximates that of non-adaptive transmission. Hence the 
frequency separation and the multipath delay (or the coherence 
bandwidth) are the factors that determine the performance of 
the proposed adaptive modulation method. The typical values 
of σ are on the order of microseconds in outdoor mobile radio 
channel [11]. Suppose ∆fσ = 0.1 and σ = 1µ sec. Then the 
frequency separation ∆f = 100KHz. This means that two 
channels can be separated by 100KHz and still benefit from 
the proposed adaptive transmission method. 

Another practical consideration is the adaptation of the 

parameter ρ in (9) at the transmitter as a function of the 
variation of the rms delay spread σ. To investigate the limits 
on the speed of adaptation, we use the physical model to 
generate challenging and typical scenarios. In Fig.7, the 
variation of the rms delay spread is shown for three cases. For 
each scenario, the reflectors are arranged to give an 
approximately exponential excess delay distribution. The rms 
delay spread σ is slowly varying for case 1, a typical case. In 
the challenging cases 2 and 3, σ varies rapidly due to 
shadowing of many reflectors by a nearby structure during a 
portion of the track. We investigate the performance of 
adaptive modulation on these channels during the T=1 sec 
interval when σ varies rapidly in cases 2 and 3 (from 3.5 to 4.5 
sec in Fig. 7). The variation of the rms delay spread is 
approximately from 0.7 to 2.3 µs and 0.4 to 2.6 µs for cases 2 
and 3, respectively. The target BER is 10−3 and the power is 
adjusted to maintain the target BER to compensate for the 
mismatch of the rms delay. The parameter ρ is updated at the 
rate Rρ Hz. Fig. 8 shows the BPS vs. SNR for the normalized 
adaptation rate RρT = 1, i.e. the value of ρ is not updated 
during the interval T. There is about 2dB loss for the 
challenging case 3 relative to the rms-invariant case 1. To 
improve performance, the correlation ρ needs to be tracked 
and updated more frequently. Fig. 9 illustrates that there is 
significant performance loss for the challenging case if RρT < 
2. By analyzing datasets produced by the physical model, we 
concluded that the variation of the rms delay (and ρ) is 
typically slow and tracking of the correlation ρ does not result 
in significant additional computational and feedback load. The 
required rate of update of the parameter ρ is significantly 
slower than the low sampling rate for predicting at frequency 
f 1  in (10). Thus, the proposed robust prediction method based 
on the observations at a different carrier is feasible, but 
infrequent update of the time-variant frequency correlation is 
required to satisfy the adaptive transmission performance 
criterion (e.g. the BERtg). 

In this paper, the assumption of the exponentially distributed 
propagation delay (2) results in the relationship of the 
parameter ρ and the rms delay spread σ that is approximated 
by (12). If the distribution of the propagation delay is different, 
this relationship will change. For example, for the uniform 
distribution, the coherence bandwidth and ρ are reduced for a 
given σ, and hence the performance of the prediction in the 
frequency domain and the bit rate are degraded relative to the 
exponentially distributed excess delay. Since we directly 
estimate the correlation ρ from the dataset, our algorithm is 
robust to the variation in the distribution of the excess delay. 

 

V. CONCLUSION 
A novel adaptive modulation method that uses predicted 

CSI of a different carrier was presented. The statistical model 
of the prediction accuracy distribution was created, and system 
performance was evaluated for various frequency separation 
values and rms delay spreads. We demonstrated that 
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significant bit rate gains can be achieved relative to non-
adaptive systems for realistic channel parameters, and that 
increased frequency separation and multipath delay limit the 
performance of adaptive transmission. We also used a novel 
physical model to investigate the rate of adaptation to the 
variation of the rms delay spread. The results in this paper give 
valuable insights into designing adaptive transmission methods 
for correlated carriers and multicarrier systems. 
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τ = 0. 
 
Fig. 2. System model. 
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Fig. 5. rms delay spread for physical model. 
 
Fig. 6. BPS vs. normalized frequency separation for different 
prediction techniques. fdm = 100Hz. Prediction range is 2ms. 
 
Fig. 7. The variation of the rms delay spread σ for typical (case 1) 
and challenging cases (cases 2 and 3). 
 
Fig. 8. BPS vs. SNR for RρT =1. ∆f = 50KHz. 
 
Fig. 9. BPS vs. normalized adaptation rate RρT. SNR = 20dB. 
BERtg=10-3. ∆f = 50KHz. 
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Fig. 1. Cross-correlation vs. normalized frequency separation ∆fσ for τ= 0. 
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Fig. 3. MMSE vs. normalized frequency separation ∆fσ for fs =5 fdm. Prediction range 

= 0.2/fdm. 
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Fig. 4. Bit per symbol vs. ρ for different SNR for power control M-QAM. Target BER=10−3. 
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Fig. 5. rms delay spread for physical model. 
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Fig. 6. BPS vs. normalized frequency separation for different prediction techniques. fdm = 100Hz. Prediction 

range is 2ms. 
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Fig. 7. The variation of the rms delay spread σ for typical (case 1) and challenging cases (cases 2 and 3). 
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Fig. 8. BPS vs. SNR for RρT =1. ∆f = 50KHz. 
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Fig. 9. BPS vs. normalized adaptation rate RρT. SNR = 20dB. BERtg=10-3. ∆f = 50KHz. 
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