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ABSTRACT 

Adaptive orthogonal frequency division multiplexing (AOFDM) modulation is a promising technique for achieving high 

data rates required for wireless multimedia services. To accomplish efficient adaptive channel loading, the channel state 

information (CSI) needs to be fed back to the transmitter. Since the fading channel varies rapidly for fast vehicle speeds, 

long range fading prediction (LRP) is required for mobile radio AOFDM to insure reliable adaptation. We use past chan-

nel observations to predict future CSI and perform adaptive bit and power allocation for the OFDM system. We derive the 

minimum mean-square-error (MMSE) long-range channel prediction that utilizes the time and frequency domain correla-

tion functions of the Rayleigh fading channel. Since the channel statistics are usually unknown, robust prediction methods 

that do not require the knowledge of the correlation functions are developed. Statistical model of the prediction error is 

created and used in the design of reliable adaptive modulation.  In addition, several methods that significantly reduce the 

feedback load for mobile radio AOFDM systems are developed and compared. We use a standard sum-of-sinusoids model 

and a novel physical model to test our algorithm. Simulation results demonstrate reliable performance and robustness of 

the proposed techniques, thus validating feasibility of AOFDM for rapidly varying mobile radio channels. 

I. INTRODUCTION 

Continued increase in demand for all types of wireless services such as voice, data, and multimedia is fueling the need 

for higher capacity and data rate. Orthogonal frequency division multiplexing (OFDM) [1] has been proposed for use in 

high-speed wireless data applications due to its relatively simple receiver structure compared to single carrier transmission 

in frequency selective fading channels. In a frequency selective fading channel, some subcarriers experience a deep fade 

while others are subject to channel gain. The spectral efficiency can be improved by allocating more bits to those subcar-

riers with favorable channel conditions than to those in a deep fade. This is called adaptive OFDM (AOFDM). Several 
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practical integer-bit and power allocation algorithms have been addressed in [2−4] that perform the optimum or near-

optimum loading of bit and power in an OFDM frame. 

AOFDM requires CSI feedback from the receiver. Since the channel is rapidly time variant for fast vehicle speeds, 

there is a mismatch between the channel quality that is estimated by the receiver and fed back to the transmitter, and that 

is actually experienced during the transmission of the following OFDM frame. This degrades the achievable performance 

gain of AOFDM, especially in rapidly time variant fading. Even in an open-loop system where the CSI is obtained by 

channel estimation at the transmitter as in time division duplex (TDD) operation [5], current CSI is not sufficient since 

future channel conditions need to be known to adapt transmission parameters. To realize the potential of AOFDM, the 

channel variations have to be reliably predicted at least several milliseconds ahead. 

Recently, a novel adaptive long-range prediction (LRP) method for flat fading channel was proposed in [6−9]. This 

algorithm employs an autoregressive (AR) model to characterize the fading channel and computes the minimum mean-

square-error (MMSE) estimate of a future fading coefficient based on a number of past observations. The advantage of 

this algorithm relative to conventional methods is due to its low sampling rate (on the order of twice the maximum Dop-

pler shift and much lower than the data rate), which results in longer memory span and prediction further into the future 

for a fixed filter length. More recently, the LRP was extended to frequency selective channels. In [12,13], LRP and adap-

tive modulation using CSI of another carrier was addressed, and in [21], LRP for frequency hopping (FH) systems was 

investigated. In this work, we develop the long-range prediction algorithms for OFDM systems. An ideal MMSE method 

that utilizes previous observations in time and frequency domain, and robust adaptive LRP algorithms are developed and 

compared. The LRP is utilized in adaptive bit and power allocation for the OFDM system. Statistical model of the predic-

tion error is created and used in the design of reliable adaptive modulation. 

The fading channel is characterized as the superposition of several scattered components. The accuracy of the LRP al-

gorithm is determined by the rate of change of amplitude, frequency and phase associated with each scatterer [6,9−11]. 

However, the standard Jakes model or a stationary random process description does not capture the variation of these pa-

rameters. To validate the LRP, novel physical channel modeling based on the method of images was proposed in [9−11]. 

It was demonstrated in [9−11] that this physical model generates data sets that closely resemble measured data, and results 

of the LRP for the physical model and measured data are similar. In addition, this model can generate different scenarios 

to classify typical and challenging cases for testing the algorithm. These scenarios are more difficult to identify for the 



3 of 14 

measured data. Thus, the physical model allows to test robustness and to determine practical constraints of the proposed 

adaptive transmission methods. In this paper, we employ this physical model to test performance of the LRP for AOFDM. 

The transmitter can obtain the knowledge of the CSI to properly adapt the modulation parameters for each subcarrier 

from different sources. If the communication between the two stations is bi-direction and the channel can be considered 

reciprocal, as, for example, in TDD systems, then each station can estimate the channel quality on the basis of the re-

ceived symbols and adapt the parameters to this estimation. This is called open-loop adaptation [5]. If the channel is not 

reciprocal, the receiver has to estimate channel quality from feedback resulting in closed-loop adaptation. The feedback 

load consumes power and bandwidth, and the fed back CSI needs to be quantized resulting in degraded performance. 

(Note that for many adaptive transmission applications, e.g., selective transmitter diversity or fixed power adaptive modu-

lation, it is not necessary to feed back the actual fading coefficient. It is sufficient to send to the transmitter just the an-

tenna selection or modulation index bits derived from the estimates of predicted values at the receiver. However, feedback 

of complex fading coefficients is required for some adaptive transmission applications and/or if the prediction is per-

formed at the transmitter [9].) For AOFDM, the CSI is required for all subcarriers, resulting in high feedback load that 

increases for fast vehicle speeds due to high feedback rate. Hence feedback load should be minimized while providing 

sufficient information for the transmitter to predict the future CSI accurately. In this paper, we investigate reduction of the 

feedback load for closed loop systems by using the correlation induced by the multipath fading between the subcarriers. 

The remainder of this paper is organized as follows. Section II introduces the channel model and statistics used to per-

form and test our prediction algorithms. In section III, we first briefly describe the adaptive OFDM system, and then pre-

sent the theoretical MMSE long-range prediction and robust prediction methods that do not require the knowledge of the 

channel statistics for the AOFDM system. In Section IV, robust adaptive bit and power loading for mismatched channel 

information is investigated and the reduced feedback techniques are explored. 

II. PROPAGATION MODEL AND CHANNEL STATISTICS 

The equivalent lowpass complex fading coefficients at K subcarriers, f1<f2<. . .<fk, where | f i − f j |< <  the carrier fre-

quency fc,  can be closely approximated as [17]: 

 c(f i ,t) =∑
n=1

N
 A(n)exp{j(2πfd(n)t+φi(n)},i= 1,2. . . K (1) 
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In (1), for the nth path, A(n) is the (real) amplitude and fd(n) = fc
v
c cos(θ(n)) = fdm cos(θ(n)) is the Doppler shift, where v, c, 

fdm, and θ(n) are the speed of the mobile, the speed of light, the maximum Doppler shift, and the incident angle of the path 

to the direction of the mobile, respectively. The phase difference for the nth path, φi(n) − φj(n) = 2π∆fτ(n), where ∆f = fj − 

fi is the frequency separation, and τ(n) is the excess propagation delay. The gains c(f i ,t) are distributed approximately as 

zero mean complex Gaussian random variables. Therefore, the amplitudes |c(f i , t)| are Rayleigh distributed. We assume 

the wide sense stationary uncorrelated scattering (WSSUS) model [15] with θ(n) being uniformly distributed on [0, 2π], 

and the propagation delay τ(n) being exponentially distributed [17] with the probability density function (pdf) p(τ)  =     

1
σexp{− τ/σ}, where σ is the rms delay spread [18]. The ensemble average correlation function (EACF) for two fading 

signals with the time difference ∆t and the frequency separation ∆f can be factored into the time-domain correlation func-

tion Rt(∆t) and the frequency domain correlation function R f(∆f) as [16,19]: 

 RE(∆t,∆f)=E[c(f 1 ,t) c *(f 2 ,t+∆t)] = Ω R t(∆t) R f(∆f) (2) 

where Ω = E[|c(f i , t)|2]  is the average power of the fading signals. (We normalize Ω to 1 throughout the paper), Rt(∆t) = 

J0(2πfdm∆t) is the zero order Bessel function [17] and R f(∆f) =
1

1+(2π∆fσ)2 + j
2π∆fσ

1+(2π∆fσ)2. We define fdm∆t and ∆fσ as the 

normalized time difference (NTD) and the normalized frequency separation (NFS), respectively. 

To generate the CSI with the desired correlation function (2), Jakes model is employed. In this model, N equal 

strength multipath components in (1) are equidistant on the unit circle. The usefulness of this model in testing the long 

range prediction algorithm is limited due to time-invariant parameters (the amplitude, the shifts and the phase are fixed 

once they are chosen). We extend the novel physical model in [9-11] to AOFDM channels and use it to test the robustness 

of the proposed LRP methods to variations of these parameters. Figure 1 demonstrates the scattering configuration and the 

channel gain for the physical model data set used in this paper. The maximum Doppler shift is 100Hz. The Doppler shifts 

undergo significant variation in the transition interval between samples 500 and 700. This interval is used to test the ro-

bustness of the LRP to parameter variation in the rest of this paper. 

III. SYSTEM MODEL AND LONG RANGE PREDICTION 

Consider an OFDM signal with K subcarriers, symbol (block) duration Ts, and subcarrier (tone) spacing ∆fs. Assume 

the channel bandwidth of the each subcarrier is much smaller then the coherence bandwidth and the channel state 
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information does not change within one OFDM symbol duration Ts, but varies from symbol to symbol. The equivalent 

complex channel gain Hs[n, k] at nth symbol block and kth subcarrier can be modeled as the samples of the time-varying 

frequency selective channel in (1) with the time domain and frequency domain sampling interval Ts and ∆fs. The ideal 

EACF (2) for the OFDM symbols with block difference ∆n and tone spacing ∆k can be expressed as RE(∆nTs, ∆k∆fs). 

The uncoded AOFDM system aided by the LRP and reduced feedback considered in this paper is depicted in Fig. 2. 

The input data is allocated to the subcarriers according to the CSI fed back from the receiver. The LRP is employed to 

enhance the CSI accuracy. Let a[n, k] denote the complex baseband symbols at nth block and kth tone. The received signal 

after OFDM demodulation can be expressed: 

 X[n,k]=Hs[n,k]a[n,k]+w[n,k] (3) 

where w[n,k] is the additive white Gaussian noise with power spectrum density N0. Then frequency domain coherent 

channel estimation of the complex symbols associated with each of the K subcarriers is employed. A 2−D minimum mean 

square error channel estimator was proposed in [19]. Let  

 H
~

s[n,k]=Hs[n,k]+w~ [n,k] (4) 

denote the estimated CSI, where w~ [ n,k] is the estimation error modeled as white Gaussian noise with power spectrum N0

~
. 

Define the observation SNR as E[|Hs[n, k]|2]/N0

~
. 

We derive the linear MMSE-based channel predictor for the fading samples Hs[n, k] in (3) characterized by (1). One 

important parameter for the LRP is the sampling rate. For narrow band single carrier systems, the sampling rate of the 
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Figure 1. Geometry of the physical modeling and the corresponding data set. 
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LRP is much lower than the symbol rate [9]. While the symbol interval in OFDM systems is longer, it is still beneficial to 

choose the sampling rate of the LRP lower than the symbol rate. Let H
~

[n, k] denote the estimated CSI with the sampling 

interval Tp (an integer multiple of the OFDM symbol interval Ts). The channel predictor for the CSI at the kth tone and the 

nth sample based on the p previously observed samples at K subcarriers can be constructed by: 

 H
^

[n,k]=∑
j=1

p
 ∑
m=1

K
 d*(j,m)H

~
[n−j,m] (5) 

Provided that the correlation functions (2) are known, the optimal filter coefficients d(j, m) that minimize the MSE = 

E[|(H[n, k]−H
^

[n, k])|2] and the closed form expression for the MMSE Jmin are derived in [16]. This result serves as a theo-

retical foundation for our prediction problem and will be used in the performance analysis. 

In the linear prediction algorithm (5), the optimum MMSE is achieved by observing previous symbols of multiple 

subcarriers. However, this method is very complex in practice. Moreover, we observed that if the SNR of the observed 

feedback samples is high, the improvement in the prediction accuracy when non-adjacent subcarriers observations are 

used relative to observing just past samples of desired and adjacent subcarriers is negligible [16]. In fact, it can further be 

demonstrated that if the CSI is noiseless and the correlation functions are separable (2), then past samples of the desired 

subcarrier are sufficient to achieve the optimal MMSE performance [16]. Thus, we propose to simplify the algorithm by 

using only previously observed samples at subcarrier k to predict the CSI H[n,k]: 

 H
^

[n,k] =∑
j=1

p
 dj

*(n)H
~

(n−j,k), k=1,2,. . . .,K (6) 

H
~

[n, k] X[n, k]

a[n, k] 

LRP 

OFDM de-
modulation 

Time-varying multipath 
fading channel 

OFDM modula-
tion 

Channel 
estimation 

Reduced 
feedback 

Adaptive bit and 
power allocation

Input data 

Feedback 
information

Figure 2. Block diagram of an adaptive OFDM system.
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Note that if the observation SNR is low, adjacent subcarriers can be easily incorporated to improve the performance by 

reducing the noise level at the cost of the system complexity. While in general, the coefficient vector d(n) = [d1 d2…dp]T in 

(6) needs to be computed and adapted individually for each subcarrier, for our channel model it is sufficient to employ the 

same filter coefficient vector d(n) to predict future CSI for each subcarrier. This method is justified by the fact that the flat 

fading coefficients of different subcarriers have approximately the same Doppler shifts (see (1)). It was shown in [6] that 

only the Doppler shifts associated with the scattering determine the prediction coefficients d(n) in (6). Hence the filter 

coefficient vector d(n) should remain tone-invariant resulting in significantly reduced computational complexity and 

greatly improved tracking ability for the adaptive prediction methods discussed in the following sections since all feed-

back observations can be used jointly to update the coefficients. We call this method simplified multiple carriers predic-

tion (SMCP). Note that this tone invariability can be generalized to the case when observation of several adjacent subcar-

riers are used for prediction provided that the same number of adjacent subcarriers is employed on each side of the desired 

subcarrier [16]. This method extends to adaptive transmitter antenna diversity systems since the channels for all antennas 

have the same Doppler shifts. 

The optimum MMSE channel prediction above relies on the knowledge of the time and frequency domain correlation 

functions (2). However, these correlation functions depend on the particular environment and are usually unknown. In 

addition, the coefficient vector d(n) in (6) needs to be computed adaptively as the Doppler shifts in (1) vary with time. We 

employ the adaptive Least Mean Square (LMS) and Recursive Least Squares (RLS) algorithms, which do not require the 

knowledge of the correlation functions of the channel, to update the prediction filter coefficients for the OFDM system. 

The error between the desired response and the predicted CSI at subcarrier k is e[n, k]= H[n, k] − ∑
j=1

p
 dj

*[n] H
~

[n-j, k], k =  

1. . .K. The average mean square error (AMSE) over all subcarriers is defined as 

 AMSE = J(n) = 
1
K∑k=1

K
 E[|e[n,k]|2] (7) 

This AMSE is used for updating the coefficients of the LMS and RLS algorithms. Since AMSE is the average of the sin-

gle carrier prediction error, it is lower-bounded by the MMSE for the single carrier LRP Jamin given by Jmin for (5) with K 

= k =1. Note that using AMSE in SMCP, we adapt the coefficient vector d(n) jointly using the errors for all subcarriers. 

This improves accuracy and convergence relative to single carrier adaptive prediction [7,9,11,16]. 
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We use the Jakes (N=34) and the physical model to validate the performance of the LRP for the OFDM system. The 

prediction filter length p in (6) is 50. The maximum Doppler shift is 100 Hz and the rms delay spread is approximately set 

to 1µs. To construct an OFDM symbol, assume that the entire channel bandwidth, 800kHz, is divided into 128 subcarri-

ers. The symbol duration is 160µs, and the guard interval is 5µs. Thus, the subcarrier symbol rate is approximately 6KHz. 

For each subcarrier, the fading signal is sampled at the low rate of 466Hz for the LRP (the prediction range is 1/466Hz ≈ 

2ms). In this paper, we assume reliable channel estimation and hence the high effective SNR (80 dB) of the observed CSI. 

While actual SNR of the observed samples might be much lower, it is possible to employ noise reduction techniques due 

to very low sampling rate of the LRP [7,9]. Interpolation is utilized to predict channel coefficients at the subcarrier symbol 

rate [7−9]. 

Figure 3 demonstrates the AMSE (7) for the SMCP method for the Jakes model. When these results are compared 

with the single carrier prediction, we find that the excess mean square error for the LMS algorithm Jex(n) ( = J(n) − Jamin) 

of these two approaches is  the same given the same step size µ. The MSE curve shown for µ=0.005 corresponds to both 

methods. However, the single carrier algorithm diverges for large µ, while for the SMCP (6), µ can be chosen as large as 

0.1 without divergence, thus improving the convergence rate. As the NFS increases, larger step size µ can be chosen, re-

sulting in faster convergence [16]. The RLS significantly improves on the LMS. For the RLS, the excess mean square er-

ror Jex for SMCP is derived similarly to that for the single carrier case [20]. It decays almost linearly with nK (the conver-

gence rate is approximately K times faster than for single carrier prediction for (6)). For λ =1, Jex(n) converges to zero, 

and for λ close to 1, the Jex(∞) ≈ Jamin
(1−λ)p

2K . Hence for large K, Jex(∞) ≈ 0. Thus, SMCP improves the convergence rate 

and the steady state MSE for the RLS relative to the single carrier prediction [6−9]. 

In Fig. 4, the SMCP is explored for the physical model. It is observed that the RLS algorithm converges rapidly with 

almost no excess MSE for λ = 0.9, whereas the LMS algorithm converges more slowly with significant excess MSE rela-

tive to the RLS algorithm. Fig. 4 demonstrates that the RLS algorithm is good at tracking the non-stationary channel. Dur-

ing the transition period (Fig. 1), the forgetting factor λ = 0.1 has better tracking ability than λ = 0.9. Hence it is more ro-

bust to the non-stationary environment. The tracking results for the LMS algorithm are much poorer with a relatively high 

MSE during and even after the transition period. We also observed that the proposed prediction algorithm is more robust 
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to noise in the feedback signals compared to the single carrier prediction [8,9] for both the LMS and RLS algorithms if 

adjacent subcarriers are employed for prediction. 

IV. ADAPTIVE OFDM AND REDUCED FEEDBACK 

In this paper, we employ channel loading optimization under the bit rate maximization (BRM) criterion, where the 

goal is to allocate the limited energy among the subcarriers to maximize the overall bit rate subject to a target bit error rate 

constraint [4]. A simplified loading method similar to [3] is compared with the optimal Hughes-Hartogs algorithm [2] in 

the presence of imperfect CSI that results from prediction errors. 
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For each subcarrier we employ rectangular M(i)−QAM modulation [15] where M(1)=0, M(i)=2i−1, i=2…6. Let c^ de-

note the CSI obtained from the linear prediction algorithm (6) and c the actual complex gain at a certain subcarrier. Hence 

c^ and c are jointly complex Gaussian and their amplitudes α^  and α are both Rayleigh distributed. The SNR γM(i) required 

to employ M(i)−QAM modulation can be found by numerical search to meet the bit error rate constraint  

 BERc = 
⌡⌠
0

∞
BERM (i)(γM( i )x

2)pα|α̂ (x) dx ,  ( 8)  

where BERM(i) is the bit error rate for the M-QAM modulation on the AWGN channel [15], and pα|α̂, the conditional pdf of 

α given α^ , is given by [14,16] p(α|α^ ) = 
2α

(1−ρ)Ω  I0(
2 ραα^

(1−ρ) ΩΩ^
) exp(−

1
1−ρ(

α2

Ω  + 
ρα^ 2

Ω^ )), where the parameter ρ is the corre-

lation coefficient between α2 and α^ 2: 

 ρ=
Cov(α2,α^ 2)

Var(α2)Var(α^ 2)
 (9) 

and Ω = E{α2} = 1, Ω
^

= E{α^ 2} and I0 is the 0th order modified Bessel function. Once the γM(i) are calculated for each modu-

lation level and each subcarrier, they are used to implement the loading algorithms in the presence of imperfect CSI. The 

only difference in the implementation (relative to the perfect CSI case) is that the SNR γM(i) in (8) is used in place of the 

ideal SNR required to achieve the BER with M(i)-QAM. 

The average bits per symbol (BPS) vs. the correlation coefficient ρ for different SNR = 
Ptotal

KN0
 constraint is shown in 

Fig. 5, where we assume each subcarrier has the same prediction accuracy ρ and noise power N0, and Ptotal is the total 

power constraint. The BER constraint for each subcarrier is 10−3. The correlation ρ= 1 corresponds to perfect prediction, 

while ρ= 0 represents the worst case when the BPS of the adaptive modulation converges to that of the non-adaptive M-

QAM for given SNR and bit error rate constraint BERc. It is observed that the simplified algorithm is near-optimal when ρ 

is close to 1 and has performance loss less than 0.1 BPS for ρ <<1 compared with the optimal Hughes-Hartogs algorithm.  

Next we address the problem of feedback load reduction for AOFDM. As discussed in the Introduction, it is desirable 

to reduce the feedback load for AOFDM channels. We explore several methods for reducing the feedback of the OFDM 

signal vectors H
~

 = [H
~

(n, 1) … H
~

(n, K)] (4) while insuring accurate reconstruction at the transmitter. Since H
~

 is modeled 

as Gaussian, the estimates of reconstructed signals are formed as linear combinations of the signals that are fed back. The 
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performance is measured by the correlation coefficient ρ (9) between the reconstructed signals and the actual CSI for each 

subcarrier and is dependent on the feedback density (FD), which is defined as the number of fed back symbols divided by 

the total number of subcarriers FD = 
Number of fed back symbols
Total number of subcarriers . We also define the normalized feedback density 

(NFD): 

 NFD = 
FD

normalized subcarrier frequency separation (10) 

We assume non-quantized channel observations. In practice, the fedback symbols need to be quantized. However, due to 

the low feedback rate (sampling rate) required for the LRP and the reduced feedback feasible for AOFDM, the quantiza-

tion level can be chosen large without significantly reducing the achievable bit rate. Thus, the actual performance is ex-

pected to be close to that obtained for ideal non-quantized channel observations. The feedback can be reduced by project-

ing the CSI onto an orthonormal basis and feeding back a subset of projection coefficients. Since the basis of the 

Karhunen-Loeve (K-L) low rank modeling [20] depends on the knowledge of the channel correlation function R f(∆f), we 

propose to utilize the discrete Fourier basis and transform the CSI H
~

 using the inverse discrete Fourier transform (IDFT). 

This choice is meaningful since the IDFT corresponds to the channel impulse response. The K-point IDFT of the CSI H
~

 is 

given by I(m) = 
1
K ∑

k=1

K
 H

~
(n, k)exp{j2π

k−1
K (m −1)}, m= 1…K. The samples I(m) are relatively small for m>τmax∆fK. In 
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OFDM channels, K is chosen larger than τmax∆fK (∆f <1/τmax) to avoid intersymbol interference (ISI). Thus, the trans-

formed signal I(m) can be truncated, fed back to the transmitter and reconstructed by the DFT. Alternatively, we can di-

rectly feed a uniformly sampled subset of the CSI samples H
~

 back to the transmitter using a direct reduced feedback. 

We use the Jakes and the physical model to validate the performance of our AOFDM system aided by the LRP with 

reduced feedback. The target BER for the adaptive OFDM system is 10−3. The system parameters are described in Section 

III. The BPS performance for reduced feedback methods is compared in Fig. 6 for the Jakes model. For the ideal KL 

method, the performance is near optimal when the NFD (10) is larger than 6. This implies from (10) that only 4 symbols 

need to be fed back for a 128-subcarrier OFDM system with normalized subcarrier frequency separation 0.005. For the 

practical IDFT method, the performance loss is less than 0.5 BPS at NFD = 6 as opposed to 1 BPS loss for the direct re-

duced feedback method with linear interpolation. The choice of the feedback density provides a trade-off between the 

feedback load and the prediction accuracy, and hence the transmission rate. 

The average BPS of the AOFDM for different prediction algorithms for the Jakes and physical channel models is plot-

ted in Fig. 7. Perfect feedback is assumed. Comparison reveals that the RLS has better performance than the LMS algo-

rithm for the Jakes and non-stationary physical model. The performance of the RLS algorithm for the Jakes model is near-

optimal (not shown), whereas the loss is less than 0.5 dB for the physical model compared to the perfect knowledge of the 

CSI. The performance of the AOFDM using the outdated CSI samples [14] (1 ms delay) without prediction for the Jakes 
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Figure 6. Performance comparison of reduced feedback methods. 
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model is also shown in Fig. 7. This results in significant bit rate loss assuming stationary Rayleigh fading channel, while 

prediction achieves near-optimal BPS for non-stationary channels. 

V. CONCLUSION 

A mobile radio AOFDM system aided by the long-range prediction and reduced feedback was investigated. A realis-

tic physical model and a stationary random phase model were employed to validate the prediction performance. The simu-

lation results demonstrated that accurate long range prediction is required to achieve the potential of adaptive OFDM sys-

tem for fast vehicle speeds and realistic delays. Specifically, we introduced the RLS prediction method that is robust to 

realistic multipath OFDM fading channels. The statistical model of the prediction accuracy distribution was created to 

perform the bit and power allocation for the AOFDM system. Finally, several methods were developed to reduce the 

feedback load, and it was shown that the IDFT method offers significant feedback load reduction while maintaining near-

optimal spectral efficiency. 
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