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ABSTRACT

Recently it was proposed to adapt several transmission methods, including modulation, power control,

channel coding and antenna diversity to rapidly time variant fading channel conditions.  Prediction of the

channel coefficients several tens-to-hundreds of symbols ahead is essential to realize these methods in

practice.  We describe a novel adaptive long range fading channel prediction algorithm (LRP) and its

utilization with adaptive transmission methods.  This channel prediction algorithm computes the linear

Minimum Mean Squared Error (MMSE) estimates of future fading coefficients based on past

observations.  This algorithm can forecast fading signals far into the future due to its significant memory

span, achieved by using a sufficiently low sampling rate for a given fixed filter size.  The LRP is validated

for standard stationary fading models, and tested with measured data and with data produced by our novel

realistic physical channel model.  This model accounts for the variation of the amplitude, frequency and

phase of each reflected component of the fading signal.  Both numerical and simulation results show that

long range prediction makes adaptive transmission techniques feasible for mobile radio channels.

Key words:  adaptive long range fading channel prediction, adaptive modulation, adaptive power

control, adaptive coding, transmitter diversity, Rayleigh fading channel, realistic physical modeling.

1. INTRODUCTION

The 3rd generation of wireless systems is endeavoring to satisfy growing consumer demands [1, 2]:

transmitting high-speed data (up to 2Mbits/s), video, multimedia traffic as well as voice signals to mobile

users.  This tremendous growth in demand for wireless communications capacity has created a need for
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new modulation, coding, power control and detection methods that can more efficiently use the multipath

fading channels encountered in mobile radio.  However, since the channel changes rapidly, the transmitter

and receiver are not usually optimized for current channel conditions, and thus fail to exploit the full

potential of the wireless channel.  Recently, several new adaptive transmission techniques, such as

adaptive modulation [3 - 22], adaptive channel coding [23 - 31], adaptive power control [4, 25, 26], and

adaptive transmitter antenna diversity [32 - 36], have been investigated by many researchers.  These

adaptive transmission schemes vary the constellation size, symbol rate, coding rate, transmitted power

level, weights of transmission antennas, or any combination of these parameters by instantaneously

monitoring channel conditions.  Other recently proposed adaptive transmission techniques include

adaptive processing gain and frame length control [37, 38] for Direct Sequence Code Division Multiple

Access (DS/CDMA) systems, as well as adaptive quantizer designed to match fading channel states [39].

By taking advantage of the time-varying nature of the wireless fading channel, all these adaptive schemes

are trying to use both power and spectrum more efficiently to realize the higher bit rate transmission

without sacrificing the Bit Error Rate (BER) performance.  It is anticipated that adaptive transmission

methods will be utilized in many wireless products in the near future.  As an example, the 3rd generation

GSM phase 2+ system expected on the market by the year 2000 utilizes Adaptive Multi Rate codec

(AMR) to further improve GSM speech service [40].

To implement adaptive transmission methods in practice, the channel state information (CSI) must be

available at the transmitter.  CSI can be estimated at the receiver and sent to the transmitter via a feedback

channel.  Thus, feedback delay and overhead, processing delay and practical constraints on modulation,

coding and/or antenna switching rates have to be taken into account in the performance analysis of

adaptive transmission methods.  For very slowly fading channels (pedestrian or low vehicle speeds),

outdated CSI is sufficient for reliable adaptive system design.  However, for faster fading that

corresponds to realistic mobile speeds, even small delay will cause significant degradation of performance

since channel variation due to large Doppler shifts usually results in a different channel at the time of

transmission than at the time of channel estimation [4, 22, 56].  To realize the potential of adaptive

transmission methods, these channel variations have to be reliably predicted at least several milliseconds,

or tens to hundreds of data symbols ahead.

While many researchers have addressed a related problem of estimation of current fading conditions,

prediction of future fading coefficients has not been addressed until recently.  While most of this paper

focuses on our long range prediction algorithm [49 - 59], some other prediction methods proposed in the

literature are summarized below.  In [41], an ESPRIT-type algorithm was used to estimate the dominant

sinusoids that make up the fading signal.  Then these sinusoids were extrapolated to predict future

samples.  Both synthetic and real data was examined, and it was concluded that reliable prediction is
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feasible about a wavelength ahead (or 10 ms ahead for the vehicle speed of 68 miles per hour and the

carrier frequency of 1 GHz).  Since fades occur at least half a wavelength apart, this prediction capability

means that a future deep fade can often be forecasted.  In [42], Multivariate Adaptive Regression Splines

(MARS) model was used to predict parameters of wideband fading channels several milliseconds ahead

for fast vehicle speeds, and information-theoretical analysis was performed to demonstrate the long-range

prediction capability.  Obviously, the required prediction range is dictated by the application, and in many

instances (e.g., selection of RAKE fingers or of the receiver antenna), prediction only a few data symbols

to a millisecond ahead is satisfactory.  Several methods have been reported in the literature to achieve

reliable prediction performance in this range for mobile radio channels.  Examples of these investigations

include the root-MUSIC methods [43], neural network based predictors [44], nonlinear Volterra adaptive

prediction [45], and Prony algorithm based channel prediction [46].  In addition, the authors of [47]

introduced prediction of channel state for the Finite State Markov Channel (FSMC) [48] employed in

conjunction with an adaptive modulation/coding study [24].

To achieve desired long range prediction capability, the above methods require a long observation

interval and heavy computational load to compute current model parameters.  In rapidly changing mobile

radio environments, the vehicle speed and scattering geometry change continuously, and thus the model

parameters need to be recomputed frequently.  Thus, there is a need for adaptive low complexity long

range prediction techniques that meet the accuracy requirements of adaptive transmission schemes for

realistic mobile radio channels.

We have investigated a novel adaptive long range fading channel prediction algorithm (LRP) in [49 -

59].  This algorithm characterizes the fading channel using an autoregressive (AR) model and computes

the Minimum Mean Squared Error (MMSE) estimate of a future fading coefficient sample based on a

number of past observations.  The superior performance of this algorithm relative to conventional

methods is due to its low sampling rate (on the order of twice the maximum Doppler shift and much

lower than the data rate) [52, 53].  Given a fixed model order, the lower rate results in longer memory

span, permitting prediction further into the future.  The prediction method is enhanced by an adaptive

tracking method [52, 53] that increases accuracy, reduces the effect of noise and maintains the robustness

of long range prediction as the physical channel parameters vary.  In addition to testing our method on

standard stationary fading models [49, 51 - 53], we utilize a method of images to create a novel physical

channel model where fading is viewed as a deterministic process formed by the addition of several

scattered components [54, 58].  The amplitude, frequency and phase of each component slowly vary as

the vehicle moves through an interference pattern.  The variation of these parameters is not captured by

the standard Jakes model [60] or a stationary random process description [61].  However, the accuracy of

the LRP is determined by the rate of change of these parameters.  The novel physical model allows us to
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test the proposed LRP algorithm and identify typical and challenging situations encountered in practice.

We also use field measurements provided by Ericsson, Inc. to validate the performance of our prediction

method and the insights of the novel physical model [54, 55, 58].  Finally, power prediction for wideband

CDMA (WCDMA) was addressed in [56].

The goal of the LRP method is to enable adaptive transmission.  In [50 - 53, 55, 58, 59], we have

combined LRP with the truncated channel inversion power control method [4, 62].  In [57], joint adaptive

variable rate Multilevel Quadrature Amplitude Modulation (MQAM) [4] and LRP was addressed.

Combined long range power prediction and Selective Transmission antenna diversity (STD) [36] for

WCDMA was studied in [54].

In this paper, we summarize these findings and quantify performance gains achieved when future

fading estimates produced by the LRP are used instead of the outdated CSI.  The paper is organized as

follows.  In section 2, we review fading channel models and adaptive transmission methods and discuss

the importance of accurate long range channel prediction in adaptive transmission.  We describe the LRP

algorithm and its utilization in conjunction with adaptive modulation in section 3.  Finally, in Section 4,

our novel physical model is discussed, and results of testing the performance of the LRP on the

interference patterns created using this model and on measured field data are presented.

2. ADAPTIVE TRANSMISSION FOR FADING MOBILE RADIO CHANNELS

Characterization of Fading Channels

In wireless communication systems, the received signal experiences significant power fluctuations due

to fading [60, 61, 63 - 65].  Signal fading is caused by multipath propagation and Doppler frequency shift.

Multiple scatterers give rise to multipath that causes interference between reflected transmitter signal

components.  As the mobile drives through this interference pattern, a typical fading signal results as

illustrated in Figure 1.  The superposition of component waves leads to either constructive (peaks) or

destructive interference (deep fades).  When all delayed components arrive at the receiver within a small

fraction of the symbol duration, the fading channel is frequency-nonselective, or flat.  This often occurs in

narrowband signaling.  In wideband transmission, the multipath delay is often non-negligible relative to

the symbol interval, and frequency-selective fading results.  In addition, when the receiver, the transmitter,

and/or the scatterers are moving, the n-th scattered component undergoes a Doppler frequency shift given

approximately by [65]:

fn = fc 
v
c cosθn = fdm cosθn (1)
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where fc is the carrier frequency, v is the vehicle speed, c is the speed of light, θn is the incident radiowave

angle with respect to the motion of the mobile, and fdm is the maximum Doppler frequency shift.  The

complex envelope of the flat fading signal at the receiver is

c(t) = ∑
n=1

N

 An e j(2πfnt+φn), (2)

where N is the number of scatterers, and for the nth scatterer, An is the amplitude, fn is the Doppler

frequency shift in (1), and φn is the phase.  The parameters An, fn, and φn are slowly time-variant as

discussed later in the paper.  Throughout the paper we assume without loss of generality that the average

channel power E(|c(t)|2) is normalized to one.  This standard assumption simplifies performance analysis

and is not used in channel estimation and prediction.  A fading channel is often called rapidly time-

varying2 when a mobile passes through several fades in a second [66].  Faster vehicle speeds and larger

carrier frequencies cause more rapid fluctuations in the fading signal.

A well known statistical model that characterizes a flat fading channel without the Line of Sight (LOS)

is Rayleigh fading in which the fading coefficients are modeled as the complex Gaussian random

variables [60, 61].  A deterministic Jakes model [60] is used as a standard model in computer simulations.

Using Jakes model, the theoretical Doppler spectrum of the Rayleigh fading channel can be accurately

approximated by a summation of a relatively small number of sinusoids (usually less than nine) [60].  The

sinusoidal signal decomposition (2) was utilized in channel estimation methods [84, 86 - 88] and several

channel prediction methods reviewed in Section 1.

Adaptive Transmission Techniques

In contrast to the additive white Gaussian noise (AWGN) channel characterized by a constant signal

Signal-to-Noise ratio (SNR), in mobile radio channels the SNR is time-variant due to multipath fading

and interference from other users.  In this paper we model the multiuser interference as additive Gaussian

noise, and focus on transmission techniques that combat channel fading.  Conventional constant

transmitted power and bit rate design suffers severe performance penalty due to the Bit Error Rate (BER)

degradation during deep fades when the channel power is very low [61].  This results in high transmitted

power requirements.  For example, the Binary Phase Shift Keying (BPSK) in Rayleigh fading requires the

transmitted SNR=24 dB to achieve the BER = 10-3.  Using adaptive power control, the transmitted power

can be allocated according to the instantaneous channel strength.  For example, in the truncated channel

inversion method (TCI) [4, 51, 52], transmission is avoided when the instantaneous channel power falls

below a certain threshold (during deep fades), and the transmitted power is proportional to the inverse of

the fading channel power when it is above the threshold.  Assuming perfect CSI at the transmitter, the

                                                  
2  This is different from the definition of fast fading where channel variation is at the symbol rate [63, 65].
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BER=10-3 can be achieved by TCI when the average transmitted SNR = 7dB and the threshold = 0.4.  This

matches the performance of the AWGN channel.  For higher thresholds, TCI is even more energy

efficient since the channel is used only when it is very strong.  (Due to constructive interference, the

power of the peaks in the fading channel (Fig. 1) exceeds that of the AWGN channel.)  In Section 4, we

remove the perfect CSI assumption and combine TCI with our LRP method (see Figure 10).

TCI is not a practical method since it requires rapid transmitted power variation.  In addition, its

performance improvement is achieved at the expense of lower normalized data rate (bandwidth

efficiency), since the data is not transmitted when the fading level is below the threshold.  Bandwidth and

power efficient adaptive modulation can be achieved by varying the constellation size M (and therefore

bit rate) according to channel strength.  For fixed bandwidth, larger values of M result in higher bit rates,

but also have higher SNR requirements [61].  In adaptive methods, higher M are chosen when the channel

is strong, and extra power is available, and lower M are reserved for poor channel conditions  [67, 68].

Bandwidth and power gains of these methods are due to two important properties: first, constant power

and modulation size techniques suffer most BER degradation during deep fades; and second, the fading

channel spends most of the time outside deep fades (Figure 1).  Thus, adaptive modulation techniques use

relatively high average constellation size (and bit rate) most of the time, and avoid severe BER penalty by

reducing the bit rate and using power efficient low modulation sizes (or turning off transmission entirely)

during deep fades.  Thus, the transmission load is shifted away from the deep fades and increases as the

channel gets stronger.  As a result, much faster bit rates relative to non-adaptive techniques can be

achieved without sacrificing the BER performance [4].  For example, consider the following simple

adaptive modulation scheme: when the amplitude of the normalized channel coefficient is greater than an

appropriately chosen constant threshold, 16-QAM is used for the transmission, otherwise, 4-QAM is used.

The simulation result for the threshold of 0.3 is shown in Figure 2.  In this figure, it is assumed that

perfect CSI is available at the transmitter.  We observe that the adaptive modulation scheme retains most

of the bandwidth efficiency of 16-QAM, while matching or surpassing the energy efficiency of the

conventional 4-QAM.

Overview of adaptive transmission methods

Variable constellation size signaling strategy was proposed in [69 - 71] and have been successfully

used in the V. 34 telephone modem [72].  More recently, adaptive modulation for mobile radio channels

has attracted substantial research interest [3 - 22, 28, 73 - 75].  Most of this research work focuses on the

following issues: modulation level selection rule [4, 10, 12, 13, 21, 22], transmit signal power control

policy [4, 73], symbol rate switching criteria [10, 28], classification of the demodulation level [9, 17],

channel estimation and prediction [10, 28], the effect of channel estimation errors, feedback delay and

mobile speed [4, 10], and the performance analysis of throughput and BER [4, 10, 15, 74].  The
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performance of adaptive modulation schemes can be further improved when antenna diversity is used at

the receiver [7].  Hardware constraints on the implementation of adaptive modulation were considered in

[75].

Accurate prediction of future CSI is essential for implementation of the adaptive modulation

algorithms, and several researchers considered this problem.  For example, adaptive modulation design

aided by predicted CSI was considered in [10, 28].  However, either short range prediction or very slow

fading were addressed in these investigations.  Adaptive signal design using delayed fading estimates was

studied in [21].  In that paper, the current channel fading amplitude conditioned on the delayed fading

estimates is characterized as a Rician random variable, and the design requires the knowledge of the

correlation coefficient between the current channel state information (CSI) and the outdated fading

estimates.  In practice, the autocorrelation function is generally not known at the transmitter.  Moreover,

with this design rule even very small delays cause significant bit rate loss (e.g. 0.8ms delay for Maximum

Doppler shift 100Hz corresponds to correlation coefficient ρ = 0.94 in [21] which causes at least

1bit/symbol bit rate loss relative to the ideal case).

In mobile radio environment, it is also often of interest to consider adaptive channel coding

techniques that conserve power (see [62, 76]).  An efficient approach is to vary the code rate according to

the fading channel conditions [23, 24, 26, 77].  The basic idea is to select a code with low rate when the

channel is going into a fade, and a high rate code when the channel becomes stronger.  For example, BCH

codes with several different rates were used in [24, 26] and an adaptive Reed-Solomon code in [77].

Punctured convolutional codes were utilized in [23] since they have superior  performance and

availability of a wide range of code rates without changing the basic structure of the encoder and decoder

(codec).

Recently, adaptive trellis coded modulation (TCM) methods that provide both power and bandwidth

efficiency have been investigated in, e.g. [3, 23, 29, 73, 77 - 80].  For example, the theoretical and

simulation results in [3] showed that 3-dB and 4-dB gain relative to uncoded adaptive modulation can be

achieved by a four- and eight- state adaptive TCM, respectively.

Adaptive transmission for antenna array systems has also attracted the attention of researchers.

Diversity antenna arrays require several antenna elements placed with sufficient separation at the

transmitter and/or the receiver.  As with temporal or frequency diversity methods, they help to combat

fading by resolving several fully or partially decorrelated fading channels.  Since it is unlikely that these

channels will go through a deep fade at the same time, higher average received SNR results when the

outputs of the branches are combined.  Many recent investigations focused on transmitter diversity

techniques for the downlink since, in practice, a mobile is often limited to a single antenna, while a base

station can employ several antennas.  Those transmission diversity techniques that do not utilize CSI at
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the transmitter can be classified as non-adaptive.  We focus on adaptive transmission diversity methods

that usually require feedback from the receiver to the transmitter, but also have better performance than

non-adaptive techniques (see [32, 56].)  In fact, it can be shown that, assuming perfect CSI, there is no

BER loss due to placing multiple antennas at the transmitter rather than at the receiver.  For example, the

Transmitter Adaptive Array method (TxAA) [32] is equivalent to the Maximal Ratio Combining (MRC)

at the receiver [61], while Selective Transmitter Diversity (STD) [33, 36] matches the performance of

selection diversity for the receiver array.  Due to its implementation simplicity, the STD scheme has

attracted significant interest recently.  In the STD the channel power of each transmitter antenna is

monitored at the receiver, and the antenna with the strongest power is selected for transmission.

The importance of long range channel prediction in adaptive transmission

As we discussed in the introduction, accurate knowledge of future CSI is extremely important for

realizing the potential of adaptive transmission.  As an example, consider the application of STD in the

proposed 3rd generation WCDMA system [81, 82].  One of the key features that makes WCDMA feasible

globally is its high carrier frequency of 2 GHz.  However, this high carrier frequency results in very large

Doppler shifts at moderate vehicular speeds (e.g. 65 mi/h corresponds to fdm= 200 Hz) that cause

significant variations of the fading channel coefficients over short time periods.  Thus, outdated channel

estimates fed back to the transmitter become less useful for adaptive signaling application, and long-range

fading prediction capability becomes more important [56].  For example, in Figure 3, we compared the

BER performance of the STD scheme with and without channel prediction for two transmitter antennas

that are separated sufficiently far apart that the signals transmitted from these antennas experience

independent flat Rayleigh fading (similar results were obtained for multipath fading).  Based on the

received power, the strongest antenna is selected at the receiver.  The antenna selection bit is sent back to

the transmitter and determines the antenna that is going to transmit during the next slot (switch at 1.6KHz

curves) or during the next four slots (switch at 400Hz curves.) For STD without prediction, this bit is

based on the power of the noiseless pilot symbol received in the last slot.  Thus, the CSI is delayed by the

slot duration (0.625ms) relative to the beginning of the switching interval.  When long range prediction is

utilized, previous noiseless pilot symbols collected at the rate of 1.6KHz are used to predict the average

channel power during the next switching interval.  The most recent observation is also delayed by

0.625ms with respect to the antenna selection instance. This predicted power determines the value of the

antenna selection bit.  Results show that significant performance gains (here around 4dB) are achieved for

fast vehicle speeds when LRP is employed.  As described below, comparable or greater gains are also

possible for other adaptive transmission techniques using long range prediction.
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3. LONG RANGE PREDICTION OF RAPIDLY VARYING FADING CHANNELS

The MMSE prediction of the flat fading channel using the AR model

The objective of the long-range prediction is to forecast future values of the fading coefficient far

ahead.  To accomplish this task, a linear prediction (LP) method based on the AR modeling was proposed

in [49, 51].  Consider the equivalent lowpass discrete-time system model at the output of the matched

filter and sampler given by:

yk = ck bk + zk, (3)

where ck is the flat fading signal sampled at the symbol rate, bk is the binary phase shift keying (BPSK)

data sequence, and zk is the complex discrete AWGN process with the variance N0/2.  Suppose a sequence

of p previous samples of the fading signal is observed.  (In general, the sampling rate differs from the data

rate.  Throughout this paper, the subscript n refers to the sampling rate for prediction purposes, and k to

the data rate.)  The MMSE prediction of the future channel sample c^ n based on p previous samples cn-1, ... ,

cn-p is given by:

c^ n = ∑
j=1

p

 djcn-j (4)

where p is the AR model order, and the optimal coefficients dj are determined by the orthogonality

principle [83] as:

d = R-1 r, (5)

where d = (d1,···,dp)T, R is the autocorrelation matrix (p×p) with coefficients Rij = E[cn-i c
*

n-j] and r is the

autocorrelation vector (p×1) with the coefficients rj = E[cn c
*

n-j].  The correlation coefficients Rij and rj can

be estimated from the observation samples without the prior knowledge of the Maximum Doppler shift or

the number of scatterers.  Note that the samples in (4) have to be taken at least at the Nyquist rate given

by twice the maximum Doppler frequency fdm.  The sampling rate we choose is close to this Nyquist rate

and therefore is much lower than the data rate in (3). The predicted samples can be interpolated to forecast

the fading signal at the data rate [49 - 51].

To show that the lower rate sampling can result in more accurate long range prediction when the filter

length p in (4) is fixed, we extend one-step prediction in (4) to a general channel prediction problem as

follows.  The objective is to find the MMSE estimate of a future sample c(τ) (τ > 0)  by observing p

previous samples collected at and prior to time zero at the sampling rate fs=1/Ts.  The predicted value:

c^(τ) = c^υ= ∑
j=0

p-1

 djc-j (6)
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The interval τ = υTs is called the prediction range, where υ  can be any positive real number 3.  The LP

filter coefficients dj can be determined as in (5) by minimizing the MSE, E[|e(τ)|2]=E[|c(τ) - c^(τ)|2].  The

resulting MMSE is given by:

E[|e(τ)|2] = 1 - ∑
j=0

p-1

 djr(τ+jTs), (7)

where the autocorrelation function r(t)= E[c(s)c*(s+t)].  For the Rayleigh fading channel (throughout the

paper, when we refer to Rayleigh fading, we assume isotropic scattering environment  [60]):

r(t) = J0(2πfdmt) (8)

where J0(.) is the zero-order Bessel function of the first kind [60].  The plot of this function is shown in

Figure 4 for fdm = 100 Hz.  For given model order p and sampling rate fs, we define the memory span as:

(p-1) ! Ts = (p-1)/fs which measures the observation interval used in (4, 6) for the future channel

coefficient prediction.  Now, let us discuss how the memory span is related to the performance of the

MMSE channel prediction.  Fix model order p, and vary the sampling rate fs.  As fs increases, the portion

of the autocorrelation function spanned by the samples r(τ+jTs) in (7) decreases.  For example, in Fig. 4,

for p = 20, fs = 25 kHz results in a memory span of only 0.76 ms when fdm=100Hz.  The range of values of

the autocorrelation function samples along this interval is small.  When we try to predict channel far

ahead, i.e. when τ  is large (see Fig. 4), these autocorrelation values become small, and the MMSE (7)

increases.  Now, let us consider prediction at a lower sampling rate.  In this case, the observation samples

are spaced much further apart and result in a large memory span (in Fig. 4, when p = 20 and fs = 500 Hz,

the memory span becomes 38 ms).  The autocorrelation values used in (7) significantly vary over this

interval for any realistic prediction range.  Due to the large sidelobes of the autocorrelation function, some

of these autocorrelation samples are large enough to keep the MMSE from getting very large, and reliable

long range prediction can be achieved even when the prediction range is much greater than conventionally

defined coherence time4 [65].

The effect of the sampling rate was evaluated in [53], and it was found that for each model order p

there is an optimal low sampling rate that minimizes the MMSE.  Given the maximum Doppler shift of

100Hz, for the Rayleigh fading channel (characterized by the infinite number of scatterers) this optimal

rate is close to 1KHz for moderate to high model order p (p ≥ 10).  In practice, the number of effective

scatterers is usually modest (usually not more than 20), and the sampling rate of 500 Hz gives the best

performance [53].  Note that when noisy observation are used in (7), the effect of the noise is incorporated

into R in (5) by adding (N0/2)I where I is the p×p identity matrix.  While R can be singular in the noiseless

                                                  
3  When τ is an integer multiple of the sampling interval, i.e., τ = υTs where υ is an integer, we call this υ-step prediction.
4  In this paper, the coherence time τ0 corresponds to r(τ0)=1/2, where r(.) is the autocorrelation function of a given fading
process [65].



11

case due to the oversampling relative to the Nyquist rate (=2fdm)[56], the inverse in (5) can usually be

computed when additive noise is present.  The theoretical performance comparison of the MMSE

performance of the long range prediction with various sampling rates is shown in Figure 5.  For example,

when fdm=100 Hz, the range of 0.2 on the x-axis corresponds to 2 ms, or 50 data symbols ahead assuming

the sampling rate given by the data rate of 25 kHz, and 1 sampling point ahead with a lower sampling rate

of 500 Hz. As seen from the figure, the same future value can be predicted with much greater accuracy by

using the low sampling rates. Thus, when the sampling rate is reduced greatly relative to the data rate, but

the filter length p remains the same, prediction much further ahead becomes feasible.

In the discussion above, the complex-valued flat fading coefficients are predicted and observed.

However, in some cases, prediction of the channel power is of interest.  For example, in the decision

directed channel estimation, phase ambiguity makes prediction of future complex values problematic.

But this is not a serious limitation, since implementation of many proposed adaptive transmission

techniques, e.g. [4], depends on the knowledge of future power only, and phase prediction is not

necessary.  Furthermore, for frequency-selective channels future total channel power can be utilized in

adaptive transmission.  For example, in the investigation of selection transmitter diversity study for

WCDMA, we utilized predicted total channel power obtained from the outputs of the RAKE receiver

[56].  In the prediction of fading power, increased memory span also insures large prediction range

required for adaptive transmission applications.

Adaptive long range prediction

In practice, many factors affect the performance of the long range prediction.  First, the

autocorrelation function of the channel is not known a priori.  To compute the initial estimates of the

channel coefficients d as in (5), we utilize an observation interval that consists of a number of received

channel samples.  When this interval is not sufficiently long, the LRP suffers degradation due to the

model mismatch.  This mismatch is further enhanced by channel variation due to changes in the vehicle

speed and positions of the scatterers.  Accurate prediction is also affected by additive noise and data-

dependent observations (unless pilot signals are used).  Finally, when the prediction interval is longer than

one step ahead (multi-step prediction), we iterate the equation (4) by using previously predicted samples

instead of the observations.  This can result in error propagation.

Below we describe several techniques that can be used to improve prediction accuracy.  Since these

methods involve adaptive tracking, we refer to the resulting algorithms as adaptive long range prediction.

Throughout this section, we use the flat Rayleigh fading random process in all theoretical results and the

standard Jakes model [60] in all the simulations.  Unless specifically noted, we assume that the Jakes

model has nine oscillators, and the maximum Doppler frequency shift is 100 Hz.
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Consider first the problem of predicting one step ahead (as in (4)), but using the samples of the

received signal yk (3) at the data rate  to estimate the observations cn at the low sampling rate.  Assuming

that the data rate is 25Kb/s, and the sampling rate is 500Hz, this results in the prediction of 2ms or 50 bits

ahead.  Since the data bits are not known a priori, either training bits or decisions can be used in this

estimation process.  In the results below, we assume that correct decisions are available, and let the

received samples be yk = ck + zk.  To obtain the estimates of cn, one can simply use the noisy observations

yn collected at the low sampling rate.  However, at low SNR, this results in unacceptable degradation of

prediction accuracy.  Instead standard estimation procedures can be utilized to reduce the effect of noise.

Ideally, Wiener filtering [83] of a large number of previous received values yk will lead to noise reduction.

However, in practice, to extract an accurate fading estimate in the decision-directed mode, adaptive

techniques are preferred.  In [53, 59], we investigated the effect of various estimation methods on the

prediction accuracy for a range of SNR values in conjunction with the TCI adaptive power control method

(see Section 2).  Due to channel inversion in TCI, the received signal is approximately constant when the

predicted power is above the threshold, and the Least Mean Squares (LMS) [83] adaptive tracking is

sufficient.  The MSE performance comparison that illustrates the noise reduction capability of the

adaptive tracking is shown in Figure 6.  LMS tracking is very attractive low-to-moderate SNR, but the

effective SNR and the MMSE saturate for high SNR.  These MSE performance gains translate into the

BER advantages and make adaptive prediction feasible for realistic SNR values [52, 53, 59].

As explained above, another source of performance degradation is channel mismatch reflected in

inaccurate LP coefficients d in (4).  Ideally, the computation of these coefficients requires matrix

inversion (5) that results in heavy computational loads even for moderate model order p (30~50).  We

investigated adaptive tracking of the LP coefficients that avoids matrix inversion and greatly reduces

channel mismatch [52, 59].  This method is based on updating the estimates of d using the LMS

algorithm:

d(n+1) = d(n) +ηen cn
* (9)

where η is the step-size, en= cn - c
^

n, cn= (cn-1, ···, cn-p).  This adaptation is performed iteratively during the

observation interval to achieve convergence and greatly reduce the required observation interval length.

Moreover, it is used during transmission to track channel variations.  For stationary channels (without

parameter variation), the steady-state MMSE, Jada, of linear prediction when dj is tracked using LMS is

given by [83]:

Jada = Jmin + 
1
2 ηJminp(1+

1
2 N0) (10)

where No/2 is the variance of noise in the observation samples, and Jmin is the optimal MMSE (7) of linear

prediction.  This adaptive tracking technique has near-optimal performance as illustrated in Figure 7 [53].
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Utilization of long range prediction in adaptive modulation

This example illustrates the BER gains that can achieved using adaptive modulation when LRP is

employed.  We consider a fixed power and modulation level-controlled scheme based on square MQAM

signal constellations.  The target BERtg = 10-3 [57].  We restrict the MQAM constellations to sizes M = 0,

2, 4, 16, 64.  In the design of an adaptive modulation system, one needs to take into account the accuracy

of available CSI.  If the modulation rule is designed for perfect CSI, and there are CSI errors, the

algorithm will not meet its target BER specifications.  In [57], we developed a statistical model for the

CSI error of the MMSE channel prediction (eq. (4-6)) that can aid the appropriate modulation level

selection.  This model produces the probability density function (p.d.f.) pβ(x) of the ratio β(t) = α(t) / α^ (t),

where α(t) = |c(t)| in (2) is the actual fading coefficient, and α^ (t) is its estimate.  The design rule for the

modulation level selection is as follows: given fixed transmitter power Es, or the average received SNR

per symbol γ− = Es/N0 (we assume E(α2(t))=1), to maintain a target BER, we need to adjust the modulation

size M according to the instantaneous channel gain α(t).  In other words, the adaptive modulation scheme

can be specified by the threshold values αi, i = 1, �, 4, defined as: when α(t) ≥ αi, Mi-QAM is employed,

where M1 = 2, Mi = 22(i-1), i > 1.  When perfect CSI α(t) is available, these thresholds can be directly

calculated from the BER bound of MQAM for an AWGN channel [4]: BERM ≤ 0.2 exp(-1.5γ/(M-1)) for

M>2, and BER2 = Q( 2γ ), where γ = α2(t)γ− is the instantaneous received SNR.  However, when the

predicted CSI α^ (t) is used, the appropriate bound BER*M, can be obtained by evaluating the expectation

of BERM over β(t) using pβ(x).  The bound BER*M should be used to calculate thresholds instead of BERM

when only the predicted CSI is available.  (In a related technique in [21], noiseless delayed CSI is

assumed available at the transmitter, and the BER*M is calculated based on a conditional Rician

distribution of the current channel amplitude.)  When this selection rule is applied to CSI obtained without

the aid of long range prediction, the bit rate gains associated with adaptive modulation are significantly

reduced for realistic mobile radio conditions.  However, when LRP is applied to standard stationary

fading models, there is very small difference between the thresholds calculated using perfect and

predicted CSI, even for large vehicle speeds.  Thus, in this case, calculation of new threshold values is not

required5.  As a result, LRP allows adaptive MQAM to achieve its ideal bit rate for realistic mobile radio

conditions.

We examined the BER performance of adaptive modulation aided by channel prediction, and the

simulation results are shown in Figure 8.  In this figure, we use predicted CSI α^ (t) to select the

modulation level, while the thresholds are calculated based on the perfect CSI assumption.  We set target

                                                  
5 In [85], we showed that the non-stationarity limits the performance of adaptive modulation as the prediction range increases.
In this case, the new thresholds need to be recalculated based on BER*

M to satisfy the target BER.  Although this results in
reduction of the bit rate relative to the ideal case, the bit rate is still significantly larger than when outdated CSI is used [85].
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BERtg = 10-3 and assume the modulation switches at the symbol rate of 25Kb/s.  Both one-step (2 ms

ahead) and five-step (10 ms ahead) prediction were considered in Figure 8.  We can see that our long

range prediction algorithm provides accurate enough CSI to maintain the target BER using the thresholds

calculated based on the perfect CSI.  However, when delayed CSI is used, and the thresholds are still

calculated based on the perfect CSI (this procedure is called 'static design' in [21]), the BER performance

significantly departs from the target BER even for much more modest delays.  Similar conclusions were

obtained for a more practical adaptive modulation technique that limits the switching rate [57].  This

example, as well as transmission diversity results in Section 2 and truncated channel inversion

experiments in section 4 demonstrate that the LRP algorithm satisfies the required accuracy criteria and

provides enabling technology for adaptive transmission.

4. LONG RANGE PREDICTION FOR REALISTIC PHYSICAL CHANNEL MODEL AND

ACTUAL MEASURED DATA

All the simulation results presented above are based on the Jakes model [60] that is often used as a

standard simulation model for the Rayleigh fading channel.  However, the variation of channel parameters

associated with the scatterers (amplitudes, frequencies and phases in (2)) is not captured by this stationary

model or by the stationary Rayleigh random process characterization.  Thus, in order to test the long-

range prediction algorithm and its application in adaptive transmission systems for realistic mobile radio

channels, we introduced a novel realistic physical model of the flat fading channel based on the method of

images in [54, 58].  This physical model differs from ray-tracing calculations since we are interested in

local flat fading, not large-scale log-normal fading.   We showed that more realistic view of the fading

signal results from modeling it as a deterministic process formed by the addition of several slowly varying

scattered components.  Furthermore, we used actual field measurements to validate both the physical

model and the performance of our prediction method [55, 58].

Realistic Physical Modeling

Fading of wireless signals is a deterministic process that results from the interference between signals

following various paths to the receiver.  Although this fact is well known, the implications on the long

term channel behavior (that affects the LRP performance) have not been investigated until [54, 58].  In

these investigations, we demonstrated two important properties of realistic fading processes that are

directly related to the success of the long range prediction.

First, in contrast to the fast variation of the fading signal c(t), the parameters An, fn and φn in (2) vary

on a much lower time scale.  The rate of change depends on the local environment, so we give a few

examples for the carrier frequency of 1 GHz and the vehicle speed of 60 mph.  For a mobile 100 meters
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from the base station and near a large hill or building, the variation of amplitudes An is negligible, and

Doppler shifts of all components vary at up to 25 Hz/sec.  A challenging case results from passing two

meters from a 'spherical' car, for which the Doppler shift of a reflected component can vary at up to 900

Hz/sec, with significant amplitude variation, although still at a rate much slower than that of c(t).

Shadowing by a nearby building can also be challenging, resulting in the addition of a significant scatterer

in as little as 0.1 sec, although this time increases linearly with the distance from the building.  These

events (passing closely to a car or shadowing by a nearby building) are short-lived and relatively rare.

Insights into these properties can be found in the model based on the method of images combined with

diffraction theory as discussed in [58].  This parameter variation limits the range for which the fading

process can be reliably forecasted given current and past fading measurements.  It also determines the

required adaptation speed for the adaptive tracking method used with the LRP algorithm.  The second

important conclusion is that the number of significant scatterers is often modest even in the indoor

environment.  (A significant scatterer has power within ~10dB of the power of the strongest component.)

Thus, long range prediction investigations should focus on models with relatively few scatterers, as well

as on Rayleigh fading.

Note that accurate modeling of the number of scatterers and the variation of parameters is not critical

in the applications that are concerned with short term channel behavior (e.g., channel estimation or short

range prediction).  The fading autocorrelation functions for different values of N in (2) do not diverge

until the delay τ is large (see Fig. 4 and [53]).  Similarly, stationary models are sufficient for these

applications since parameters do not change significantly over short time intervals.  In LRP, the

observation interval, the memory span and the prediction range are much larger (see Section 3), so

realistic non-stationary modeling is necessary.

The proposed realistic physical model was validated using actual field measurements provided by

Ericsson, Inc.  These measurements were collected by a van along a route in low density urban

Stockholm.  During the measurement, the speed of the van varied between 0 and 50 km/h, though mostly

at 30km/h or below.  The frequency of the radio wave was 1877.5 MHz.  The data set contains 100,000

samples of the flat fading signal sampled at the rate of 1562.5Hz.  We analyzed this data and found that

different portions of the data set had different shapes of the autocorrelation function [58] (here and later in

the paper, the empirical autocorrelation function of the observation samples  is implied, not the statistical

autocorrelation function of a random process) .  This was due to the variation in the number and locations

of the scatterers along the measurement track.  By adjusting the types and positions of the scatterers in our

physical model, we were able to match the autocorrelation functions of different data set segments to

those produced by the model.  These experiments provided us with insights into the nature of flat fading

and the impact on the prediction accuracy.  For example, one segment of the data set had the
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autocorrelation function that resembled that of the Rayleigh fading channel (Figure 4).  This

autocorrelation shape was obtained using our physical model by placing several curved uniformly

distributed scatterers along two sides of the track of the mobile so that the image-sources subtended a

large angle from the mobile.  Another segment of the measured data had an autocorrelation function with

a much wider main lobe and a flatter tail.  This autocorrelation function shape was matched by placing

several large flat reflectors along the track.  The flat objects have distant image sources, so the angle

subtended by them is smaller.  The same Maximum Doppler shift (eq. (1)) of 46 Hz was used in both

experiments.  This behavior of the autocorrelation functions can be explained by observing that both the

range and the rate of variation of channel parameters (primarily the received Doppler shift range) increase

when the image-sources move closer to the mobile, and thus subtend a larger angle from the mobile.  The

large Doppler shift range makes the channel behave as the Rayleigh fading process associated with small

coherence time (see footnote 3) and large sidelobes of the autocorrelation function.  However, when the

image sources are far from the mobile, the Doppler shift range becomes small (since the variation of the

incident angles of radio waves is small).  The small subtended angle to the image sources widens the main

lobe, while nonstationarity flattens the tail of the autocorrelation function.  This causes much larger

coherence time for the same maximum Doppler shift (eq. (1)), i.e. the signal samples are correlated for a

longer time interval.

This comparison indicates that varied scattering environment needs to be taken into account in

designing optimal long range prediction methods.  For example, it has been verified that the large memory

span is very important for accurate long range prediction in the Rayleigh fading channel (the first model).

Its utility in the second model depends on the balance between the prediction range and the distance over

which the nonstationarity washes out the sidelobes of the autocorrelation function.

Adaptive long range prediction for non-stationary data

As discussed above, in a realistic non-stationary mobile radio environment, the Doppler shifts and

other parameters associated with the scatterered components in (2) slowly vary.  The poles of the AR

model in (4) are primarily determined by these Doppler shifts [49].  Since the LP coefficients d in (5)

directly depend on these poles, we need to update the d-vector continuously to keep up with these

variations.  For most typical cases, the scattering parameters vary slowly enough to be captured by

standard adaptive techniques [54, 58].  In the following results, the LMS algorithm was employed in the

tracking of the LP coefficients as in eq. (9).  Adaptation for prediction more than one step ahead is

presented in [54, 59].

To test the LRP method on the waveforms generated by the physical channel model, an interference

pattern was generated over an area of 10×10 meters, using one large flat and five curved (spherical)

reflectors along one side [54].  The Maximum Doppler frequency shift was assumed to be 90 Hz.  We



17

compared the performance of channel power prediction for a typical case (car drives parallel to and ~10m

from five close image sources) and a challenging case (car drives towards the reflectors (10 to 0 meters)).

The power prediction absolute error comparison is shown in Figure 9a.  We observe that the channel

power variation can be predicted very closely for a typical situation.  However, the prediction becomes

more difficult for the challenging case due to large Doppler frequency shift and large power variation as

the mobile approaches the reflectors [54, 58].  Many experiments were performed for this and other

interference patterns, and it was concluded that reliable prediction for most cases can be achieved for

prediction ranges of about half a wavelength or less.  When the prediction range approaches a wavelength,

prediction accuracy decreases.  In addition, we compared the MSE performance vs prediction range for a

stationary Jakes model and two non-stationary fading data sets: the physical data and the measured data in

Figure 9b.  All data sets correspond to the case when the image sources subtend a large angle from the

mobile (see the discussion on realistic physical modeling above).  Thus, the empirical autocorrelation

functions of all data sets resembled Fig. 4, with the Doppler shift of 46 Hz.  Despite the similarity of the

autocorrorelation functions, the MSE for the Jakes model is much lower than for two other data sets.  This

significant MSE gain is due to stationarity.  Moreover, the prediction capability of the stationary Jakes

model dataset is improved by a lower sampling rate.  This agrees with our previous analysis in section 3.

However, the prediction for the non-stationary measured and physical model data is not improved

significantly by the lower sampling rate (not shown).  This comparison shows that the prediction

capability of LRP is limited by the parameter variation in realistic fading environments. Thus, on one

hand, a non-stationary model such as that described here is necessary to test prediction algorithms, and,

on other hand, other techniques need to be explored to increase prediction range further.  Exploration of

nonlinear methods and comparison with the techniques in the literature (e.g. [41, 42]) is one of our future

research directions.

The long range prediction method was also tested on measured data [55, 58].  Numerous tests using

various segments of the data set demonstrated that long range prediction is feasible for this channel.  In

addition, the LRP for measured data was combined with adaptive modulation and truncated channel

inversion algorithm in [55, 57, 58].  As an example, simulation results for the segment of the data with the

measured correlation function similar to that of the Rayleigh fading (Fig. 4) for the TCI scheme are shown

in Figure 10.  Note significant performance gain of the LRP (with prediction) relative to the case when the

outdated channel coefficients are used to adjust the transmitter power for data bits between the two

adjacent  low rate samples (without prediction).  As we increase the prediction range in this experiment,

prediction accuracy deteriorates faster than for a data set generated by the Jakes model, despite the

similarity in the average autocorrelation functions of the two waveforms.  As for the physical model
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above, this can be explained by the non-stationarity of measured data that results from parameter

variation.

5. CONCLUSION

We demonstrated that accurate long range channel prediction is essential for reliable adaptive

transmission over fading mobile radio channels.  Theoretical and simulation results in this paper utilize

standard fading models, a novel non-stationary physical model and measurement data to validate the

proposed LRP algorithm.  While long range prediction is clearly a promising tool when utilized jointly

with adaptive transmission in realistic wireless applications, many exciting theoretical, experimental and

practical problems need to be addressed in the future to realize its potential.
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Figure 1.  A typical fading signal (Provided by Ericsson, Inc.)
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model order p=50, and SNR = 100 dB.  Rayleigh fading channel.
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signal coefficient for the TCI algorithm.  Maximum Doppler shift 100Hz.
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Figure 9.  (a) Power prediction absolute error comparison for realistic fading model.  Solid: typical
case; Dotted: challenging case. Prediction range 2.92 ms (0.26 λ).  Maximum Doppler shift 90 Hz.
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shift 46 Hz.
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Figure 10.  Performance gains of LRP for truncated channel inversion over measured data set.


