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Abstract: Due to correlated fading in frequency hopping (FH) wireless communication systems, it 

is possible to predict the future channel state information (CSI) for one frequency based on past 

channel observations of other frequencies. This prediction capability enables adaptive transmission 

techniques for mobile radio FH systems. We investigate the optimal Minimum Mean Square Error 

(MMSE) Long Range Prediction (LRP) algorithm for slow frequency hopping (SFH) systems that 

employ coherent detection. A recursive filter update algorithm is proposed to reduce the complexity 

of this method. Statistical model of the prediction accuracy is developed and used in the design of 

reliable adaptive modulation techniques. Moreover, adaptive modulation is combined with adaptive 

transmitter frequency diversity to mitigate the effect of fading and partial-band interference in 

frequency hopping communications. Both standard Jakes model and a realistic non-stationary 

physical model are employed to test the performance. Analysis and simulation results show that 

significant performance gains can be achieved relative to non-adaptive methods. 

Key words: Slow Frequency Hopping, Channel State Information, Long Range Prediction, 

Adaptive Transmission, Partial-band Interference, Diversity. 

                                                        
1 This research was supported by NSF grant CCR-0312294 and ARO grants DAAD 19-01-1-0638 and W911NF-05-1-0311. 

+North Carolina State University 
  Dept. of Electrical and Computer Engineering 
  Box 7911, Rayleigh, NC 27695-7911 
  Email: {mlei, sasha}@ncsu.edu 

*North Carolina State University 
 Dept. of Physics 
 Box 8202, Rayleigh, NC 27695-8202 
 Email: Hans_Hallen@ncsu.edu 



 1

1. Introduction 

In mobile wireless communications, system performance is severely degraded by rapidly 

time-variant multipath fading. Traditional communication systems designed for the worst-case 

channel conditions use a fixed link margin to maintain acceptable performance when the channel 

quality is poor, resulting in low bandwidth and power efficiency. Since high-speed data 

transmission is desired in future wireless communication systems, it is important to improve the 

bandwidth efficiency of mobile wireless communications while maintaining the low power 

constraint. To realize this goal, adaptation of the signal transmission to the fading channel 

conditions has been proposed. 

Adaptive transmission techniques [1-4], such as adaptive power and rate control, adaptive 

modulation and coding, adaptive transmitter antenna diversity etc., have been investigated by many 

researchers. These adaptive transmission methods vary the transmission parameters according to 

the current fading conditions. Without sacrificing the Bit Error Rate (BER) performance, adaptive 

transmission provides high spectral efficiency by transmitting the signal at high rate during 

favorable channel conditions, and reducing the transmission rate when the channel conditions are 

poor. However, the performance of the adaptive transmission systems depends on the availability of 

the accurate Channel State Information (CSI). In most adaptive transmission systems, the CSI is 

estimated by the receiver and sent to the transmitter using a reliable feedback channel. Due to the 

delay associated with channel estimation and feedback, and the transmission format constraints, the 

CSI required at the time of transmission usually differs from the CSI estimated at the receiver. This 

outdated CSI is not sufficient for the adaptive transmission. For rapidly time-varying mobile radio 

channels, even a small delay will result in significant performance degradation. To realize the 

potential of adaptive transmission, it is necessary to predict the channel several milliseconds ahead. 

A novel long range prediction (LRP) algorithm for the flat fading channel was proposed in [5-

7] (see also references on fading channel prediction methods in [7,12,37-39]). This algorithm 

characterizes the fading channel using an autoregressive (AR) model and computes the Minimum 

Mean Square Error (MMSE) estimate of a future fading coefficient based on a number of past 

channel observations. Given fixed filter length, it benefits from using lower sampling rate than 

conventional techniques. This increases the memory span so that channel coefficients can be 

predicted further into the future. In [5-8, 14], the LRP algorithm for flat fading channel is applied in 
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adaptive power control, adaptive modulation and transmitter diversity for narrowband and direct 

sequence spread spectrum systems. It was demonstrated that LRP enables these adaptive 

transmission techniques for high vehicle speed and realistic feedback delays. In [12], the LRP is 

extended to Orthogonal Frequency Division Modulation (OFDM) channels, and in [11], LRP aided 

by observations at another carrier was investigated. Since variation of parameters associated with 

reflectors affects the prediction accuracy of LRP, a novel realistic physical model was developed to 

overcome the limitations of the standard Jakes model in testing our prediction algorithm [9,10]. 

Using this model, performance of adaptive transmission aided by LRP was validated in [7-9,11,12] 

for typical and challenging fading environments. 

In this paper and [13,35], we explore adaptive transmission aided by the LRP for FH spread 

spectrum mobile radio systems that employ coherent detection. In FH communications [17], 

hopping provides frequency diversity and thus reduces the error probability due to deep fades. 

However, correlation of the fading between different frequency slots can be significant when the 

frequency separation is small compared to the coherence bandwidth of the channel [18]. This 

reduces the benefit of diversity. On the other hand, one can exploit the correlated fading at different 

frequencies in channel prediction. We propose to predict the channel coefficients in the next 

hopping frequency of slow frequency hopping (SFH) systems based on a number of past fading 

observations from previous hopping frequencies. An adaptive transmission method for SFH 

systems was previously investigated in [21,22], where a variable rate and power Reed-Solomon 

code was employed. The goal was to improve the throughput efficiency of the SFH systems by 

adapting to the slowly varying power of long term fading and the interference level. In this paper, 

we adapt the modulation level and the transmission power to rapidly varying short-term fading 

channel variations using the LRP for FH channels. The objective is to further increase the spectral 

efficiency subject to power and reliability constraints. 

Partial-band interference also seriously degrades frequency hopping communication systems 

[17]. In practice, this kind of interference may be due to a partial-band jammer, or narrowband 

transmission in the same band as the FH signal. Coding is often used to mitigate the effects of 

partial-band interference in FH communications [17,21,22]. In [24], a pre-whitening filter was 

utilized to reject interference in the fast frequency hopping (FFH) receiver. Diversity combining 

techniques have also been proposed for the FFH systems with non-coherent detection [23]. In this 

paper, we investigate joint adaptive frequency diversity and adaptive modulation to mitigate the 
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effects of partial-band interference and fading in SFH systems with coherent detection.  

The remainder of this paper is organized as follows. In section 2, we describe the system 

model and channel statistics. The MMSE Long Range Prediction algorithm for FH systems is 

introduced in section 3. In section 4, we analyze the performance of adaptive modulation aided by 

the LRP. This method is employed jointly with adaptive frequency diversity combining for SFH 

channels with partial-band interference in section 5. Numerical and simulation results are provided 

in both sections 4 and 5 to demonstrate the performance of adaptive transmission based on the LRP. 

2. Channel Characteristics 

Consider first the Frequency Selective Gaussian Wide Sense Stationary Uncorrelated Scattering 

(GWSSUS) channel model of the FH channel with q carrier frequencies [16]. Let c(f(t),t) be the 

equivalent lowpass complex sample of the fading channel at time t and frequency f(t), where f(t) is 

the carrier frequency occupied at time t. To simplify notation, we use c(f,t) instead of c(f(t),t). We 

assume that fading is flat for each carrier frequency. The spaced-time spaced-frequency correlation 

function with the time difference τ and the frequency separation ∆f is defined as [17] 

R(∆f,τ)=E[c(f,t)c*(f+∆f,t+τ)]             (1)  

From [16], the fading coefficients at frequency f 
i can be expressed as 

           c(fi,t) =∑
n=1

N

Anej(2πfnt+ϕin)         (2)   

where N is the number of reflectors. For the nth path, An is the amplitude, and fn is the Doppler shift. 

The phase difference for the nth path between two frequencies f i and f 
j is ∆ϕn=ϕjn-ϕin=-2π∆fTn [17], 

where ∆f=f 
j-f i is the frequency separation, and Tn is the excess delay of the nth path, which is 

assumed to be exponentially distributed with the probability density function (pdf) [16]: 

p(T) = 
1
σe-T/σ       (3) 

where σ is the root mean square (rms) delay spread [18] of the multipath fading channel. 

The channel coefficient c(f,t) is closely approximated by a zero mean complex gaussian 

random process with Rayleigh distributed amplitude and uniformly distributed phase. The time 

correlation function of c(f,t), defined as Rt(τ)=E[c(f,t)c*(f,t+τ)], is given by [16] 

Rt (τ) = J0(2πfdmτ)       (4) 
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where J0(⋅) is a zero order Bessel function of the first kind and fdm is the maximum Doppler shift. 

The frequency correlation function Rf(∆f)=E[c(f,t)c*(f+∆f,t)] is given by [11] 

Rf(∆f) = 
1

1+(2π∆fσ)2 + j 
2π∆fσ

1+(2π∆fσ)2           (5) 

Define ∆fσ to be the normalized frequency separation. From [29], R(∆f,τ) = Rt(τ)Rf(∆f). 

The deterministic Jakes model is often used to simulate the GWSSUS. This model employs 

time-invariant channel parameters (amplitudes, Doppler shifts and phases in (2)). While this model 

is sufficient in systems concerned with short-term channel behavior, it cannot adequately test the 

performance of the LRP method that employs long observation and prediction intervals. A novel 

physical model based on the method of images combined with diffraction theory was developed to 

generate more realistic fading datasets for testing the LRP [9,10]. In this paper, we employ the 

physical model in addition to the standard Jake model to validate performance of adaptive 

modulation aided by the LRP in FH channels. 

3. Long Range Prediction for Frequency Hopping Channels 

Consider the SFH system that employs coherent detection [19,20] with the total number of 

frequencies q and the hopping rate fh. Denote the frequency separation between adjacent carrier 

frequencies as ∆f. In this paper, we employ a randomly chosen periodic hopping pattern with length 

N=q, although the proposed methods also apply to non-periodic hopping patterns. Figure 1 

illustrates the adaptive transmission aided by the LRP for this FH system. Past reliable observations 

from all frequencies are fed back from the receiver to the transmitter. The transmitter employs the 

LRP to predict future CSI, and adapts the transmission parameters to the channel variation. 

We employ the MMSE linear prediction (LP) algorithm. Assume the channel coefficients in 

(2) are sampled at the rate fs=1/Ts, and for an integer n, define c(f(n),n)=c(f(nTs),nTs) in (2). The 

prediction ĉ(f(n+τ),n+τ) (τ is a positive integer) of the future channel coefficient c(f(n+τ),n+τ) 

based on p past observations c(f(n),n),…, c(f(n-p+1),n-p+1) is formed as (see figure 1b) 

ĉ(f(n+τ),n+τ)=∑
j=0

p-1

dj(n)c(f(n-j),n-j)                        (6) 

where dj(n) are the filter coefficients at time n, and τTs is the prediction range. Note that the 

sampling rate in (6) is much slower than the symbol rate, but is faster than the hopping rate fh.  
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The objective is to find the LP coefficients that minimize the Mean Square Error (MSE), 

defined as E[|e(n)|2]=E[|c(f(n+τ),n+τ)-ĉ(f(n+τ),n+τ)|2]. Because the hopping pattern is a random 

frequency sequence, a single prediction filter does not exist, and the LP coefficients need to be re-

computed at the sampling rate. The LP filter used at sampling time n, denoted by d(n), is 

determined by the sampling time and the hopping pattern. The optimal prediction coefficients are 

computed as [17] 

   d(n)=R(n)-1r(n)        (7)   

where d(n)=[d0(n)…dp-1(n)]T, R(n) is the p×p autocorrelation matrix of the observations at time n 

with Rij(n)=E{c(f(n-i),n-i)c*(f(n-j),n-j)}, and r(n) is the cross-correlation vector of the observations 

and the prediction at time n given by  rj(n)=E{c(f(n+τ),n+τ)c*(f(n-j),n-j)}, i,j=0,1,…,p-1 for given τ. 

These functions are computed from (4, 5). In practice, noisy channel estimates are used in (6). The 

effect of the noise is incorporated into R(n) by adding σ2I, where σ2 is the variance of the Gaussian 

estimation error,  I is the p×p identity matrix; the vector rj(n) is also modified to include noisy 

observations [17,28].  

The resulting instantaneous MMSE of this prediction method is [17] 

MMSE(n)=1-∑
j=0

p-1

dj(n)rj(n)                       (8)   

The MMSE for FH systems is computed as the average over all LP filters MMSE=
1
N ∑

n=1

N

 MMSE(n). 

When the channel is stationary and the channel correlation function (1) is known, the vector 

d(n) can be computed using (7). For realistic mobile radio channels, Rt(τ) and Rf(∆f) in (5) must be 

estimated and updated when new observations are available. In our investigation, we use pilot 

symbols [29] to estimate these channel correlation functions. The estimate of the time correlation 

function is [30]:  

Rt(τ) = 
1

N-τ ∑
n=τ

N-1

c(n)c*(n-τ),   τ=0,1,2,…,     (9) 

where c(n) are the pilot channel estimates at single frequency obtained at the sampling rate fs, and N 

is the observation length. 

The frequency correlation function can be estimated by inserting bursts of pilot symbols for 
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several frequencies at the symbol rate (τm∆F<1/2, where τm is the maximum delay spread, and ∆F is 

the frequency separation between adjacent pilot channels [29]). The channel coefficients of other 

frequencies can be estimated by interpolation. Then frequency correlation function is estimated as  

Rf(k∆f) = 
1

M(N-k) ∑
i=1

N-k

cT(f i)c*( f i+k),    k=0,1,2,…,N-1,     (10) 

where M is the burst length (dwell interval in this paper), and 

c(f    

i)=[c(f    

i,j), c(f    

i,j-1),…,c(f    

i,j-M+1)]T is the vector of the estimated channel coefficients at 

frequency f  

i at the symbol rate, i.e. c(f 

i,j)= c(f 

i,jT), 1/T >> fs. 

As new observations become available, Rij and rj in (7) are recomputed using the updated Rt(τ) 

and Rf(k∆f), and d are updated. The required rate of update of the correlation functions depends on 

the rate of channel parameter variation. In this paper, the frequency correlation function is updated 

every 5-10 hops for the Doppler shift of 50Hz and the hopping rate of 500Hz. Moreover, the 

dependency of the adaptive modulation performance on the rate of update of the channel 

autocorrelation was analyzed in [11] for various rates of variation of the rms delay spread. It was 

demonstrated that much less frequent update rate is required, resulting in significant computational 

load reduction.  

The optimal MMSE channel prediction method is complex, because it requires inversion of a 

large matrix at the sampling rate. The computation complexity is on the order of p3 multiplications 

[41]. To reduce the computation, we observe that most elements in the autocorrelation matrix at 

time n can be obtained from the autocorrelation matrix at time n-1. This observation results in a 

procedure for updating the inverse of the autocorrelation matrix recursively [40] with the total 

number of multiplications on the order of p2. Denote the autocorrelation matrices R(n-1) and R(n) 

as 

R(n-1)=
R(p-1)×(p-1)(n-1)
r1×(p-1)(n-1) 

r(p-1)×1(n-1)
r(n-1)   ,  R(n)=

r(n)
r(p-1)×1(n) 

r1×(p-1)(n)
R(p-1)×(p-1)(n)     (11) 

where R(p-1)×(p-1)(n) = R(p-1)×(p-1)(n-1) and r1×(p-1)(n-1)=r(p-1)×1(n-1)H. The subscripts denote the 

dimensions of the submatrices, and the dimensions for scalars are not shown.  

The algorithm for recursive update of R-1(n) is as follows. Suppose the inverses at times n-1 
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and n are 

R(n-1)-1 = 
X(p-1)×(p-1)

x1×(p-1) 
x(p-1)×1

x   , R(n)-1 = 
y
y(p-1)×1 

y1×(p-1)

Y(p-1)×(p-1)
     (12) 

Then using the matrix inversion lemmas [25], we obtain R(p-1)×(p-1)(n)-1 = X(p-1)×(p-1) - x(p-1)×1x1×(p-1)/x, and 

recursively compute the submatrices of R(n)-1 as: 

Y(p-1)×(p-1) = R(p-1)×(p-1)(n)-1 - 
R(p-1)×(p-1)(n)-1⋅r(p-1)×1(n) ⋅r1×(p-1)(n)⋅R(p-1)×(p-1)(n)-1

r1×(p-1)(n)⋅R(p-1)×(p-1)(n)-1⋅r(p-1)×1(n)-r(n)   (13) 

y1×(p-1) = -r1×(p-1)(n)⋅Y(p-1)×(p-1)/r(n),  y(p-1)×1 = y1×(p-1)
H    (14)  

and  

y = 1/r(n) - y1×(p-1)⋅y(p-1)×1/r(n)      (15) 

This procedure can be easily extended to noisy observations. Note that the proposed recursive 

procedure implements the original optimal MMSE method at reduced complexity. Thus, all 

numerical results in this paper are obtained using the proposed computationally efficient technique. 

While it is possible to reduce complexity further by employing, e.g., the simplified LRP 

method in [13], we have observed that suboptimal LRP methods greatly degrade performance of 

adaptive FH systems. Therefore, we focus on the optimal MMSE prediction in the numerical results 

below. 

To enable adaptive transmission in SFH systems, it is desirable to predict the channel 

coefficients for the next dwell interval using outdated observations in previous dwell intervals. 

Assume typical hopping rate of 500 hops/second, and feedback delay of at least 1ms. We found that 

the sampling rate fs=2kHz results in the best performance for given parameters [15], so we employ 

this rate in further numerical examples. As a result, five samples are predicted for the upcoming 

dwell interval. (Since the sampling rate is much lower than the symbol rate [7], interpolation is 

performed within a dwell interval to predict fading coefficients for all data points [6]; the last 

predicted sample is outside the dwell interval and is used only for interpolation.) In our method, we 

employ computationally efficient method that utilizes the same matrix R(n) for all predicted 

samples within given dwell interval. Thus, to satisfy the feedback delay requirements, we employ 

the first two samples from the last dwell interval as the most recent observations (j=0,1 in (6)), and 
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vary τ to predict all five samples. This results in the average prediction range of τTs=2ms. Figure 2 

shows the MMSE vs. normalized frequency separation ∆fσ for various maximum Doppler shifts for 

this prediction range. We observe that the MMSE increases as the frequency separation grows, and 

the prediction accuracy degrades as the maximum Doppler shift increases. As the filter length p of 

the predictor increases, the MMSE decreases and saturates [6,11,15,36]. We employ p=50 in our 

examples since this value results in near-optimal performance [15]. The performance for different 

randomly chosen hopping patterns is also investigated [15]. It was observed that different hopping 

patterns with the same total bandwidth have similar performance. However, as the total bandwidth 

of FH systems increases, the prediction accuracy decreases [13]. 

In Figure 3, the degradation of the MMSE as the observation SNR decreases is illustrated. 

While the prediction MSE does not directly translate into the performance of adaptive transmission 

methods that employ prediction, in general the performance of adaptive transmission aided by the 

LRP is seriously degraded by realistic observation SNR values. Therefore, reliable channel 

estimation of the observed CSI is required. In this paper, we assume the effective SNR (after 

estimation) of 100dB. While the actual SNR of the observed samples might be much lower, noise 

reduction techniques can be employed to decrease the estimation error greatly [6,7,37-39]. 

Moreover, our investigation in [36] shows that bit rate degradation of adaptive modulation due to 

lower effective SNR values (e.g., 40 dB) is negligible. Therefore, accurate channel estimation 

assumed in this paper is realistic and is not a limiting factor in the performance of adaptive 

transmission enabled by the LRP. 

4. Adaptive Transmission Aided by LRP 

We employ variable rate variable power Multiple Quadrature Amplitude Modulation (MQAM) 

[1]. First, assume fixed transmission power Es per symbol. The average Signal to Noise Ratio (SNR) 

is γ−==Es/N0, where N0 is the power spectrum density of the equivalent lowpass complex additive 

white Gaussian noise (AWGN). The instantaneous SNR γ=γ−α(t)2 , where α(t)=|c(f(t),t)| is the 

Rayleigh distributed channel amplitude [18]. The predicted channel amplitude α̂=|ĉ(f(n),n)|  is 

Rayleigh distributed [7]. 

In the adaptive modulation, the modulation level is adjusted according to the predicted channel 

amplitude to maintain the target bit error rate BERtg. A decision rule for the modulation level 
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selection based on the prediction accuracy was investigated in [4,11]. Let α̂  be the predicted 

channel amplitude. The conditional pdf of α given α̂ is 

 p(α|α̂) = 
2α

(1-ρ)ΩI0(
2 ραα̂

(1-ρ) ΩΩ̂
)exp(-

1
(1-ρ)(

α2

Ω  + 
ρα̂2

Ω̂
))      (16)    

where Ω=E[α2] and Ω̂=E[α̂2], and I0 is the zero order modified Bessel function, and the correlation 

ρ = 
cov(α2,α̂2)

var(α2)var(α̂2)
 . The range of the channel amplitudes is divided into five fading regions by 

thresholds αi, i=1,…,4. For the predicted channel amplitude α̂, when αi<α̂<αi+1, M(i)-QAM is 

employed, where M(1)=2, M(i)=22(i-1), i=2,3,4, α5=∞. Given α̂, the average BER of the selected 

modulation level is 

    BERM(i)
*(γ−,α̂) =⌡⌠

0

∞

BERM(i)(γ−α2) p(α|α̂)dα        (17)   

where BERM(i) is calculated using the upper bound of the BER of MQAM for AWGN channel [1]. 

The thresholds αi are chosen as BERM(i)
*(γ−,αi)=BERtg. 

The performance of the fixed power MQAM can be improved by employing variable power. 

We extend the discrete power control policy [1] to the case where the observations are predicted,  

Once the thresholds are chosen as above, each modulation level is associated with a constant 

transmission power Es(i) selected to maintain the target BER. Assuming the ideal Nyquist signal, 

the spectral efficiency takes on the same value as the average number of bits per symbol (BPS): 

  R̂ada=∑
i=1

4

log2M(i) ⌡⌠
αi

αi+1

pα̂(x)dx                  (18)   

where pα̂(x) is Rayleigh distributed pdf. For the discrete power control policy, the actual average 

transmission power is: 

 Pavg=∑
i=1

4

Es(i) ⌡⌠
αi

αi+1

pα̂(x)dx              (19) 

The outage probability is given by 

Pout = ⌡⌠
0

α1

pα̂(x)dx           (20) 
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We first use the standard Jakes model to validate the performance of the discrete power 

discrete rate adaptive MQAM described in this section. In the evaluation of the performance of 

SFH with adaptive modulation, the spectral efficiency is computed numerically using (18). When 

calculating the thresholds, the conditional pdf (16) is used in (17), and ρ is estimated by simulation. 

The following parameters are used in the simulations. The maximum Doppler shift is 50Hz. The 

frequency hopping rate is 500Hz. The channel sampling rate is 2KHz. A random hopping pattern 

with length 32 is employed. The filter length of the optimum MMSE prediction algorithm is 50. 

The symbol rate is 20Ksps (symbols per second). The modulation level is switched at the symbol 

rate. The target BER is 10-3.  

In figure 4, we plot BPS of the proposed adaptive modulation method vs. average SNR. We 

observe that significant gain can be achieved relative to the non-adaptive modulation. The gain 

depends on the normalized frequency separation. For example, if the normalized frequency 

separation is 0.05, the gain is 9-12 dB or 2-2.5BPS. If ∆fσ is smaller, greater gains can be achieved 

as illustrated in the figure. For ∆fσ=0.01, the spectral efficiency with the MMSE prediction method 

is almost equal to the BPS with perfect CSI. For ∆fσ=0.1, the gain relative to the non-adaptive 

modulation is about 3dB, or 1 BPS.  

The BPS of adaptive modulation as a function of normalized frequency separation is shown in 

figure 5. We observe that the spectral efficiency of adaptive transmission degrades as ∆fσ increases. 

The FH system benefits from adaptive transmission primarily when ∆fσ does not significantly 

exceed 0.1. As ∆fσ grows, the spectral efficiency saturates and approaches that of non-adaptive 

modulation. Thus, adaptive transmission becomes less useful for greater normalized frequency 

separation, while the benefit of frequency diversity increases as ∆fσ grows. 

Typical values of the delay spread are on the order of microseconds in outdoor radio channels 

[18]. Suppose σ is 1µs, representative of suburban areas. Then a SFH system would benefit from 

adaptive transmission when the frequency separation is as large as 100KHz (∆fσ≈0.1). If σ is 10µs, 

the frequency separation has to decrease to 10kHz to obtain good performance. In realistic SFH 

systems [20], the symbol rate is on the order of tens of Ksps. Thus, the frequency separation of SFH 



 11

systems is often less than 100KHz. Therefore, adaptive transmission aided by the proposed channel 

prediction methods is feasible for these systems. 

Note that as the number of frequencies q grows, the prediction accuracy decreases [13]. For 

example, we employ q=32 frequencies in our investigation. For this q, ∆fσ should not significantly 

exceed 0.1 to benefit from adaptive transmission. As q increases, lower ∆fσ is required for reliable 

performance. We have found that adaptive transmission is useful when the total normalized 

bandwidth (q∆fσ) is on the order of 3 or lower. In most SFH systems, the number of carriers is 

modest, i.e. q=32 is a typical value. 

Next, we illustrate the dependency of the adaptive transmission for FH systems on the 

maximum Doppler shift fdm in Figure 6. We observe that the performance gain is considerable when 

fdm is moderate. However, for fdm as large as 100Hz, the performance of the adaptive modulation 

systems is still better than the performance of the non-adaptive systems. 

Finally, we use our physical model to investigate the performance of adaptive transmission in 

realistic non-stationary fading channels. In Figure 7, the average BPS vs. average SNR for the 

adaptive transmission in Jakes model and physical model is illustrated. A typical scenario and a 

challenging scenario are created to test the performance. The reflectors are arranged to give an 

approximately exponential distribution with the average rms delay spread σ=1µs for both scenarios 

[10]. The maximum Doppler shift is 50Hz. The frequency separation between adjacent frequencies 

is ∆f=50kHz. Thus, ∆fσ≈0.05. In the typical case, the rms delay changes slowly, while in the 

challenging case, the rms delay changes rapidly in a wide range as shown in Figure 8. We use the 

method described in Section 3 to estimate and update the channel correlation functions. Since the 

channel correlation functions vary faster in the challenging scenario than in the typical scenario, the 

prediction accuracy is worse in the challenging case. While the BPS gain is lower for the physical 

model than for the Jakes model due to the channel parameter variations, significant improvement is 

still achieved relative to non-adaptive modulation. 

In this paper, we employ frequently assumed exponentially distributed propagation delay as 

justified by [16]. Different distribution of the propagation delay will modify the frequency 

correlation Rf(∆fσ). For example, for the uniform distribution, the coherence bandwidth and ρ will 

decrease for given σ, thus degrading the performance of the prediction and the bit rate relative to 
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the exponentially distributed excess delay. Since we directly estimate the frequency correlation 

Rf(∆fσ) from the dataset, our algorithm is robust to the variation of the distribution of the 

propagation delay, as illustrated in the example above. Furthermore, performance of prediction for 

varying propagation delay parameters was analyzed in [11]. 

We observe significant loss in the bit rate of adaptive modulation aided by the LRP for FH 

channels relative to narrowband transmission [7,8,38], OFDM [12] and channels where 

observations are at a different frequency [11]. This loss is significant despite reduced maximum 

Doppler shift, and is further enhanced when our realistic physical model is employed rather than the 

Jakes model. For non-FH channels, the observations are at the same frequency, and thus much 

greater prediction accuracy is achieved, (in Fig. 7, the BPS is close to the “perfect CSI” curve for 

OFDM and narrowband cases, while the system in [11] results in only 0.5 BPS loss for 15dB.)  

Moreover, in non-FH channels, we can employ fast adaptive tracking combined with LRP to 

achieve almost the same prediction accuracy for the physical model as for the Jakes model. The 

reason why we have not achieved similar gains for FH systems is that the observations were 

constrained by the hopping pattern, and thus distributed in frequency. This constraint results in 

suboptimal sampling in frequency domain, and precludes utilization of fast adaptive tracking 

techniques.  

5. Adaptive SFH Systems with Partial-band Interference 

Partial-band interference (PBI) seriously degrades performance of frequency hopping 

communications [17]. In practice, this interference may be due to a jammer, or non-hostile out-of-

system transmission. In our study, we are interested in the PBI that is not due to a hostile jammer, 

and therefore, does not vary rapidly [21,22]. The PBI is usually modeled as a narrow-band additive 

Gaussian noise.  It occupies a small fraction δ of the total bandwidth of the FH system. For the 

frequency slots where PBI is present, the one-sided noise power spectral density is N0+δ 
-1NI , 

where NI is the average power spectral density of the PBI. For the frequency slots without PBI, the 

one-sided noise power spectral density is N0. We propose to use adaptive frequency diversity 

(referred to as diversity FH) to mitigate the effects of PBI. Since this method can also improve 

performance of SFH systems without PBI, we first describe the scheme in the interference-free case, 

and then extend to systems degraded by PBI.  

In the proposed frequency diversity method, the same information is transmitted on two or 
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more carrier frequencies chosen according to a hopping pattern, and the outputs of different 

diversity branches are combined at the receiver using, e.g., selection combining (SC) or Maximal 

Ratio Combining (MRC) [17,23,27]. In the SC method, the receiver selects the output signal with 

the largest SNR, while in the MRC, signals from all frequencies are weighted prior to combining, 

with weights that are proportional to the SNRs of all frequencies. The MRC outperforms SC and is 

the optimal diversity combining method. As the number of diversity branches increases, the 

performance of both methods improves. This frequency diversity techniques can be combined with 

the adaptive modulation described in section 4. In this case, the channel gain in (17) is determined 

after diversity combining, thus improving on the gain of single Rayleigh fading channel. A similar 

combined Adaptive MQAM (AMQAM) and antenna diversity method was described in [14].  

Now, consider the SFH with PBI. To reduce complexity, we employ diversity combining 

methods where only two frequencies are used for transmission. In practice, the hopping pattern 

should be designed to assure that these two hopping frequencies f  
1 and f 

2 have large frequency 

separation to reduce the frequency correlation. In this paper, we select the frequency f 
1 first using 

the random hopping pattern. The other frequency f 
2 is separated by half of the total bandwidth of 

the SFH system (given by N∆f/2) from f  
1. For a typical normalized frequency separation ∆fσ=0.05, 

the correlation between these two frequencies is only 0.04 (N=32). Note that significant diversity 

gain can still be achieved with correlation coefficient as large as 0.7, with performance close to that 

of the independent fading case [26]. Thus, we can assume independent fading at the two hopping 

frequencies without affecting the performance significantly. 

We assume that the receiver knows perfectly where the PBI is present. This can be achieved 

by estimating the noise power at the receiver [17,23]. At the transmitter, the two upcoming 

frequencies f 
1 and f 

2 can be monitored prior to the transmission [31,32] to determine if they have 

interference. Another method of predicting interference is based on Markov chain modeling [21]. 

Since the time variant nature of the interference induces uncertainty into this knowledge of the PBI, 

we introduce a reliability factor η to model the reliability of the prediction of the PBI at the 

transmitter. Let Ik denote the indicator function for the presence of interference at the upcoming 

frequency f 
k: 
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Ik = 


1      interference is present at f 

k

0      interference is absent at f 
k   

Then the probability of the interference at the transmitter is modeled as  

pk = ηIk+(1-η)(1- Ik)      (21) 

where η∈[0,1]. As η increases, the reliability improves. When η=1, the transmitter has perfect side 

information about the PBI. 

The proposed combined adaptive modulation and adaptive transmission diversity method for 

the SFH systems operates as follows. According to a hopping pattern, symbols are transmitted on 

two frequencies simultaneously. At the receiver, diversity combining techniques described above 

[27] are employed to form the decision statistics. When there is no interference at both hopping 

frequencies, MRC is used by the receiver. When only one frequency has interference, the receiver 

employs Selective Combining (SC) to choose the frequency that does not have the interference. If 

both frequencies are interfered, we use random guess to detect data. This method has lower 

complexity and very similar performance to the optimal MRC conditioned on the interference and 

noise level [17]. 

Let f 
1 and f 

2 be the two hopping frequencies available for the next transmission according to 

the hopping pattern, and α̂1 and α̂2 be the predicted channel gains at f 
1 and f 

2, respectively. The 

average BER when M(i)-QAM is employed by the transmitter is 

BERM(i)
*(Es,N0,α̂1,α̂2,p1,p2) = (1-p1)(1-p2) ⌡⌠

0

∞

 ⌡⌠
0

∞

 BERM(i) (γ = 
Es(α1

2+α2
2)

N0
)p(α1|α̂1)p(α2|α̂2)dα1dα2 

+ p2(1-p1)⌡⌠
0

∞

 BERM(i) (γ=Esα1
2

N0
)p(α1|α̂1)dα1  + p1(1-p2)⌡⌠

0

∞

 BERM(i)(γ=Esα2
2

N0
)p(α2|α̂2)dα2 + 0.5p1p2     (22) 

where BERM(i) is derived as in (10), p(αk|α̂k) is the conditional pdf of αk given α̂k, and pk is given by 

(21), k=1,2. Fixed power is employed, and the modulation level is chosen as 

M̃=max{M(i) | BERM(i)
*(Es,N0,α̂1,α̂2, p1,p2) ≤ BERtg}   (23) 

In the LRP for channels with PBI, past observations at interference-free dwell interval are 

used to form predictions about upcoming frequencies (f 
1 and f 

2). The optimal MMSE LRP 

algorithm with recursive autocorrelation matrix update is utilized. While PBI degrades the accuracy 
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of LRP, the quality of prediction is improved relative to interference free system without diversity 

[15]. 

Next, we describe a sentient frequency hopping diversity technique that can further improve 

the performance of SFH systems. In this method, channel coefficients of L widely spaced 

frequencies (selected according to the hopping pattern) are predicted, and a subset of r frequencies 

with the largest channel gains are selected in the transmission. The idea is similar to the selective 

transmitter diversity technique [14]. In the presence of PBI, the average BER for each modulation 

level is computed (e.g. for r=2, (22) is used, where f 
1 and f 

2 are the two frequencies with the largest 

prediction gains), and the largest signal constellation that satisfies the BER requirement is selected 

for the transmission. This method can be further improved by selecting r strongest frequencies that 

are not likely to be affected by interference. 

While sentient FH has better performance than diversity frequency hopping due to its larger 

average channel gain, it is more complex, since greater number of frequencies has to be predicted. 

In practice, it is important to address the effects of these diversity methods on other users. While we 

predict a larger number (L) of frequencies in sentient FH relative to diversity FH, the actual 

transmission involves only a small number of frequencies (e.g. r=2), and lower average transmitted 

power. Thus, Multiple Access Interference (MAI) is reduced for sentient FH relative to diversity FH 

given the same number of transmitted frequencies. 

Simulations are used to demonstrate the performance of adaptive SFH with PBI for typical 

values of δ (δ=0.1, 0.2) [33]. The standard Jakes model is used. The adaptive modulation scheme 

described in section 4 is used with the modulation level selection given by (22, 23). In sentient FH, 

L=4 and r=2. We plot the average BER of diversity frequency hopping and sentient frequency 

hopping using adaptive modulation in Figure 9. The reliability factor η = 0.98, and the bandwidth 

of the PBI is δ = 0.1. It is observed that the target BERtg = 10-3 is satisfied by the proposed adaptive 

modulation and diversity combining methods. In Figure 10, we plot the BPS performance of 

adaptive modulation using diversity FH and sentient FH under the assumption of perfect knowledge 

of PBI at the transmitter (η=1, pk=Ik). As expected, the performance degrades as δ increases. The 

performance of sentient FH is better than that of diversity FH due to its larger channel gain. As L 

increases, the BPS of sentient FH saturates. Moreover, when L is very large, the BER actually 

increases due to prediction errors and the resulting inaccurate frequency selection. Our investigation 
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shows that L=4 has near-optimal performance [15].  

In Fig. 10, we also illustrate the BPS of adaptive modulation for a non-diversity system 

(single Rayleigh fading channel) with PBI. In this case, adaptive modulation as in (17) is applied 

when the upcoming frequency is interference-free, and outage occurs if there is interference. Note 

that when this method is extended to η<1, the target BER cannot be satisfied, implying that 

diversity is required for channels with imperfect knowledge of PBI at the transmitter. 

In Figure 11, we compare the outage probability of adaptive modulation for a single Rayleigh 

channel, diversity FH and sentient FH with PBI for η=1. It is observed that the outage probability 

of SFH systems can be greatly reduced by combining adaptive modulation with diversity 

techniques in the presence of PBI. 

Figure 12 shows the BPS of adaptive diversity FH systems as a function of η. We observe that 

the spectral efficiency degrades as η decreases. For both diversity and sentient FH, when η≤0.95, 

the target BER cannot be satisfied with the adaptive transmission method proposed above. While 

this investigation is beyond the scope of this paper, we envision Adaptive Bit Interleave Code 

Modulation (ABICM) [34] as a suitable coding method for this application. Previously, ABICM has 

been shown to combine the benefits of adaptive transmission with those of time diversity of BICM 

techniques for flat Rayleigh fading channels. The adaptive TCM (ATCM) methods that do not 

utilize bit interleaving [2] require very high reliability of the CSI at the transmitter to achieve 

desired bit rate gains relative to non-adaptive TCM.  In fact, when this reliability is high, ATCM 

techniques outperform ABICM methods, while ABICM achieves higher bit rates when the CSI 

becomes less accurate (e.g. due to unreliable prediction, challenging channel environment or low 

effective SNR). Moreover, ABICM can be implemented without the accurate statistical knowledge 

of the prediction error and thus is more robust than ATCM [34]. For systems with poor prediction of 

PBI as in Fig. 12, adaptive coded modulation schemes that utilize bit interleaving over several 

transmitted frequencies can provide additional diversity, similarly to non-adaptive coded techniques 

for combatting PBI [17]. The adavantages of this approach relative to ATCM without bit 

interleaving over frequencies will depend on the reliability of prediction of the fading and the PBI. 

These trade-offs and robustness of the ABICM for SFH systems with PBI can be subject of a future 

investigation. 
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6. Conclusion 

Adaptive transmission is a powerful technique that improves the spectral efficiency of time-

variant communication systems. Long Range Fading Prediction is crucial for adaptive transmission. 

The optimal MMSE channel prediction algorithm for SFH communications with coherent detection 

was introduced. A reduced complexity iterative matrix update method was proposed for this method. 

It was shown that for channel parameters that occur in practice, it is possible to predict the CSI of 

future frequency based on the channel observations of past frequencies. Both Jakes and realistic 

physical models were utilized in this investigation. It was demonstrated that the proposed LRP 

method enables adaptive modulation for SFH. Joint adaptive diversity combining and adaptive 

modulation was investigated for channels with PBI. Numerical and simulation results demonstrate 

that significant performance gains can be achieved relative to non-adaptive modulation for realistic 

FH systems. 
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Figure 1. Adaptive transmission for FH channels aided by long range prediction. 
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Figure 2. Performance of optimal MMSE LRP algorithm, q=32 and fs=2KHz, τTs=2ms, observation 

SNR=100dB. 
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.Figure 3. Performance of optimal MMSE LRP algorithm for different observation SNR, q=32 and 

fs=2KHz, τTs=2ms, fdm=50Hz. 
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Figure 4. Spectral efficiency of adaptive modulation using Long Range Prediction,τTs=2ms, 

fdm=50Hz, q=32. 
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Figure 5. Spectral efficiency of adaptive modulation  vs. ∆fσ, τTs=2ms, fdm=50Hz, q=32, Jakes 

model. 
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Figure 6. Spectral efficiency of adaptive modulation for different fdm, ∆fσ = 0.05, τTs=2ms, q=32, 

Jakes model. 
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Figure 7. BPS vs. average SNR, average ∆fσ=0.05, q=32, τTs=2ms, fdm=50Hz, fh=500Hz, fs=2kHz, 

BERtg=10-3. 
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Figure 8. The variation of RMS delay σ in the typical and challenging cases. 
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Figure 9. Average Bit Error Rate, η = 0.98, δ=0.1, τTs=2ms, fdm=50Hz, ∆fσ=0.05 
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Figure 10. Performance of adaptive SFH with partial-band interference, Jakes model, τTs=2ms, 

fdm=50Hz, ∆fσ=0.05, δ=0.1, η=1.0, L=4, r=2 for sentient FH. 
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Figure 11. Comparison of outage probability, Jakes model, τTs=2ms, fdm=50Hz, ∆fσ=0.05, δ=0.1, 

η=1.0, L=4, r=2 for sentient FH. 
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Figure 12. Performance of adaptive diversity FH with PBI, δ=0.1, τTs=2ms, fdm=50Hz, ∆fσ=0.05. 

 


