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ABSTRACT 
 
We investigate the optimal Minimum Mean Square Error 
(MMSE) Long Range Prediction (LRP) algorithm for slow 
frequency hopping (SFH) systems that employ coherent 
detection. Statistical model of the prediction accuracy is 
developed and used in the design of reliable adaptive 
modulation techniques. Moreover, adaptive modulation is 
combined with adaptive transmitter frequency diversity to 
mitigate the effect of fading and partial-band interference 
in frequency hopping communications. Both standard 
Jakes model and a realistic non-stationary physical model 
are employed to test the performance. Analysis and 
simulation results show that significant performance gains 
can be achieved relative to non-adaptive methods. 

 

1. INTRODUCTION 
 

High speed wireless communications require efficient 
use of time-variant multipath fading channels. This creates 
a need for new transmission techniques that can adapt the 
transmission parameters to the channel variations. 
Adaptive transmission [1,2] improves spectral efficiency 
by transmitting the signal at high rate during favorable 
channel conditions, and reducing the rate as the channel 
conditions degrades. To achieve the potential of adaptive 
transmission, the channel state information (CSI) need to 
be known at the transmitter. The CSI is estimated by the 
receiver and fed back to the transmitter. Due to the delay 
associated with estimation and feedback, it is necessary to 
predict the channel several milliseconds ahead. 

A novel long range prediction (LRP) algorithm for the 
flat fading channel was proposed in [3]. This algorithm 
benefits from using lower sampling rate than conventional 
techniques. This increases the memory span so that the 
channel can be predicted further into the future.  In [4], 
LRP aided by observations at another carrier was 
investigated, and in [5], the LRP is extended to Orthogonal 

Frequency Division Multiplexing (OFDM) channels. A 
novel realistic physical model was developed to test this 
algorithm beyond the level of the standard Jakes model 
[6].  Using this model, performance of adaptive 
transmission aided by LRP was validated in [3, 4] for 
typical and challenging fading environments. 

In this paper, we explore adaptive transmission aided 
by the LRP for slow frequency hopping (SFH) systems 
that employ coherent detection [9].  By exploiting the 
correlation between different frequencies, we propose to 
predict the channel coefficients in the next hopping 
interval of SFH systems based on a number of past fading 
observations from previous hopping intervals [7].  An 
adaptive transmission method for SFH systems was 
previously investigated in [10].  The goal was to improve 
the throughput efficiency by adapting to the slowly 
varying power of long-term fading and the interference 
level.   In this paper, we adapt the modulation level and the 
transmission power to rapidly varying short-term channel 
variations using the LRP for FH channels. The objective is 
to further increase the spectral efficiency subject to the 
power and reliability constraints. 

Partial-band Interference (PBI) is another serious 
source of degradation in FH communications. To mitigate 
the effects of PBI, coding can be utilized to decrease the 
BER [10]. In [11], a pre-whitening filter is used to reject 
interference in the fast frequency hopping (FFH) receiver.  
Diversity combining techniques have also been proposed 
for the FFH systems with non-coherent detection [12]. In 
this paper, we investigate joint adaptive frequency 
diversity and adaptive modulation to mitigate the effects of 
PBI and fading in SFH systems. 

The remainder of this paper is organized as follows.  In 
section 2, we describe the channel statistics and the 
MMSE LRP algorithm for SFH systems. Section 3 
analyzes the performance of adaptive modulation aided by 
the LRP. This method is utilized jointly with adaptive 
frequency diversity combining for SFH channels with PBI 
in section 4. 
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2. CHANNEL STATISTICS AND LONG RANGE 
PREDICTION FOR FREQUENCY HOPPING 

CHANNELS 
 

Consider the SFH system that employs coherent 
detection with the total number of frequencies q and the 
hopping rate fh.  Denote the frequency separation between 
adjacent frequencies as ∆f.  In this paper, we employ a 
randomly chosen periodic hopping pattern with length 
N=q, although the proposed methods are also applicable to 
non-periodic hopping patterns. 

We use a Frequency Selective Gaussian Wide Sense 
Stationary Uncorrelated Scattering (GWSSUS) channel 
model for the FH channels [14]. Let c(f(t),t) be the 
equivalent lowpass complex sample of the fading channel 
at time t and frequency f(t), where f(t) is the carrier 
frequency occupied at time t.  To simplify notation, we use 
c(f,t) instead of c(f(t),t). Assume fading is flat for each 
frequency.  The spaced-time spaced-frequency correlation 
function with the time difference τ and the frequency 
separation ∆f is defined as  R(∆f,τ)=E[c(f,t)c*(f+∆f,t+τ)] 
[15]. 
From [14], the equivalent lowpass complex fading 
coefficients at frequency f i can be expressed as  

           c(f i,t) =∑
n=1

N

Anej(2πfnt+ϕin)  (1)   

where N is the number of reflectors. For the nth path, An is 
the amplitude, and fn is the Doppler shift. The phase 
difference for the nth path between frequencies f  

i
 and f  

j
 is 

∆ϕn = ϕjn– ϕin = –2π∆fTn [14], where ∆f = f  
j– f  

i is the 
frequency separation, and Tn is the excess delay of the nth 
path, which has exponential distribution [14]. 

The channel coefficient c(f,t) is closely approximated 
by a zero mean complex gaussian random process. The 
time correlation function is given by Rt(τ) = J0(2πfdmτ), 
where J0(⋅) is a zero order Bessel function of the first kind 
and fdm is the maximum Doppler shift. The frequency 

correlation function R(∆f) = 
1

1+(2π∆fσ)2 + j 2π∆fσ
1+(2π∆fσ)2  , 

where σ is the rms delay spread [16]. Define ∆fσ to be the 
normalized frequency separation. From [13], 
R(∆f,τ)=Rt(τ)Rf(∆f). 

We employ the MMSE linear prediction method.  
Assume the channel coefficients in (1) are sampled at the 
rate fs=1/Ts, and for an integer n, define 
c(f(n),n)=c(f(nTs),nTs).  The prediction ĉ(f(n+τ),n+τ) (τ is 
a positive integer) of the future channel coefficient 
c(f(n+τ),n+τ) based on p past observations c(f(n),n),…, 
c(f(n-p+1),n-p+1) is formed as 

ĉ(f(n+τ),n+τ)=∑
j=0

p-1
dj(n)c(f(n–j),n–j)                 (2) 

The optimal prediction coefficients are computed as 
d(n)=R(n)-1r(n), where d(n)=[d0(n)…dp-1(n)]T, R(n) is the 

autocorrelation matrix with Rij(n)=E{c(f(n–i),n–i)c*(f(n–
j),n–j)}, and r(n) is the autocorrelation vector with 
rj(n)=E{c(f(n),n)c*(f(n–j),n–j)}. The resulting instantaneous 
MMSE of this prediction method is MMSE(n)=1–d(n)Tr(n) 
[15]. The MMSE for FH systems is computed as the 

average over all LP filters MMSE= 1/N ∑
n=1

N
 MMSE(n) .  

Because the hopping pattern is a random frequency 
sequence, a single prediction filter does not exist. The 
prediction coefficients, determined by the sampling time 
and the hopping pattern, need to be re-computed at the 
sampling rate.  

When the channel correlation functions are not available 
at the transmitter, Rt(τ) and Rf(∆f) must be estimated and 
updated when new observations are available. In our 
investigation, pilot symbol aided channel estimation is 
used to estimate the channel correlation functions [8]. 

The optimal MMSE LRP described above is complex, 
because it requires inversion of large matrices at the 
sampling rate.  In [7], a recursive matrix update method 
was proposed.  It significantly reduces the computation of 
the optimal LRP. Moreover, in [8], low complexity 
prediction methods were studied, and it was demonstrated 
that the optimal LRP method is required to achieve 
reliable prediction. In practice, c(f(n),n) are observed in 
the presence of noise.  The prediction coefficients d(n) can 
be easily modified to include the effect of the noise, and 
noise reduction methods can be utilized to reduce the noise 
present in the observations [3]. In this paper, we assume 
channel observations with SNR=100dB in (2). 

In SFH systems, we predict the channel coefficients of 
the next dwell interval.  A typical hopping rate of SFH 
systems is 500 hops/second. Thus, the prediction range 
τTs=2ms is desirable. The sampling rate fs=2kHz is 
employed due to its best performance for given 
parameters.  Since the sampling rate is much lower than 
the symbol rate, interpolation is performed within a dwell 
interval to predict fading coefficients for all data points.  
As p increases, the MMSE saturation level is approached. 
We found that the performance of LRP with p=50 has 
near-optimal performance [8].  Thus, we choose p=50 in 
our analysis throughout this paper. 
 

3. ADAPTIVE TRANSMISSON AIDED BY LRP 
 

We employ variable rate variable power Multiple 
Quadrature Amplitude Modulation (MQAM) [1,2].  First, 
assume fixed transmission power Es per symbol. The 
average Signal to Noise Ratio (SNR) is defined as γ−
=Es/N0. Let α(t)=|c(f(t),t)| be the channel gain at time t. 
The instantaneous SNR γ=γ−α(t)2.  Since ĉ (f(n),n) in (2) is 
a linear combination of complex Gaussian random 
variables, it is also a zero mean complex Gaussian random 
variable.  Thus, the predicted channel gain α̂=|ĉ(f(n),n)| is 



Rayleigh distributed. The conditional probability density 
function (pdf) of α given α̂ is [2] 

p(α|α̂) = 
2α

(1–ρ)ΩI0(
2 ραα̂

(1–ρ) ΩΩ̂
)exp(- 1

(1–ρ)(
α2

Ω + 
ρα̂2

Ω̂
))    (3) 

where Ω=E[α2] and Ω̂=E[α̂2] , and I0 is the zero order 
modified Bessel function, ρ=cov(α2,α̂2) / var(α2)var(α̂2) is 
the correlation coefficient between α2 and α̂2. Define the 
adaptive modulation level selection method as follows: 
when αi<α̂<αi+1, M(i)-QAM is employed, where M(1)=2, 
M(i)=22(i-1), i=2,3,4, α5=∞.  Given α̂ , the BER of the 
selected modulation level is 

   BERM(i)
*(γ−,α̂) =⌡⌠

0

∞

BERM(i)(γ−α2) p(α|α̂)dα   (4) 

where BERM(i) is calculated using the upper bound of the 
BER of MQAM for AWGN channel [1]. The thresholds αi 
are chosen as BERM(i)

*( γ−,αi )=BERtg, where BERtg is the 
target BER. 

Once the modulation level M is decided, an appropriate 
transmission power is found to maintain the target BER.  
We extend the discrete power control policy [1] to the case 
where the observations are predicted. In particular, once 
the thresholds are chosen as above, each modulation level 
is associated with a constant transmission power Es(i) 
selected to maintain the target BER.  

Assuming the ideal Nyquist signal, the spectral 
efficiency takes on the same value as the average number 

of bits per symbol (BPS): R̂ada=∑
i=1

4
log2M(i)⌡⌠

αi

αi+1

pα̂(x)dx. For 

the discrete power control method, the average 

transmission power is Pavg=∑
i=1

4
Es(i)⌡⌠

αi

αi+1

pα̂(x)dx. 

We first use the standard Jakes model to validate the 
performance of the proposed adaptive modulation method.  
In the evaluation, the spectral efficiency is computed 
numerically.  The correlation coefficient ρ is estimated by 
simulation.  The maximum Doppler shift is fdm=50Hz.  The 
frequency hopping rate is 500Hz.  A random hopping 
pattern with length N=32 is employed.  The target BER is 
10-3.  The BPS of adaptive modulation as a function of 
normalized frequency separation ∆fσ is plotted in figure 1. 
We observe that the spectral efficiency degrades as ∆fσ 
increases.  The SFH benefits from adaptive transmission 
primarily when ∆fσ does not significantly exceed 0.1.  As 
∆fσ grows, the spectral efficiency saturates and 
approaches that of non-adaptive modulation.  Thus, for 
large ∆fσ, the SFH will not benefit from adaptive 
transmission.  However, the benefit of frequency diversity 
is greater as ∆fσ increases. 

Typical values of the delay spread are on the order of 
microseconds in outdoor radio channels [16]. Suppose σ is  
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Fig.1. BPS of adaptive modulation  vs. ∆fσ. 

1µs. A SFH system would benefit from adaptive 
transmission when the frequency separation is as large as 
100 kHz.  If σ is 10µs, the frequency separation has to 
decrease to 10 KHz to obtain good performance.  In 
realistic SFH systems [9], the symbol rate is on the order 
of tens of Ksps.  Thus, the frequency separation of SFH 
systems is often less than 100 KHz.  Therefore, adaptive 
transmission aided by the proposed channel prediction 
method is feasible for these systems. It was also 
demonstrated in [8] that adaptive transmission is beneficial 
for other typical SFH parameters and moderate to high 
Doppler shifts. 

Next, we use our physical model to investigate the 
performance in realistic non-stationary fading channels.  A 
typical scenario and a challenging scenario are created to 
test the performance.  The reflectors are arranged to give 
an approximately exponential distribution of excess delays 
with the average σ=1µs for both scenarios.  Figure 2 
illustrates the variation of the rms delay spread σ in these 
two scenarios.  We observe that σ changes slowly in the 
typical case, while in the challenging case, σ changes 
rapidly over a wide range.   The performance comparison 
is presented in Figure 3.  Since the channel correlation 
functions vary faster in the challenging scenario than in 
the typical scenario, the prediction accuracy is worse in the 
challenging case.  While the BPS gain is lower for the 
physical model than for the Jakes model due to the channel 
parameter variations, significant improvement is still 
obtained relative to non-adaptive modulation. 

 
4. ADAPTIVE SFH WITH PARTIAL-BAND 

INTERFERENCE 
 

Partial-band interference (PBI) is another source of 
degradation in the FH communications [15].  It is usually 
modeled as a narrow-band additive Gaussian noise, which 
occupies a small fraction δ of the bandwidth of the FH 
system.  For the frequency slots where PBI is present, the 
power spectral density is N0+δ-1NI , where NI is the average 
power spectral density of the PBI.  For the frequency slots 
without PBI, the power spectral density is N0. 
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Figure 2. The variation of RMS delay σ. 
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Figure 3. Performance comparison for the Jakes model and 

the physical model. 
 We propose to use adaptive frequency diversity 

(referred to as diversity FH) to mitigate the effects of PBI.  
To reduce the complexity and to simplify the analysis, just 
2 frequencies are chosen.  Each symbol is transmitted at 
two frequencies f1 and f2 simultaneously according to a 
hopping pattern. These two hopping frequencies are 
chosen to have large frequency separation to reduce the 
frequency correlation.  Thus, we can assume independent 
fading at the two hopping frequencies. 

We assume that the receiver knows perfectly where the 
PBI is present. The transmitter monitors the two upcoming 
frequencies f 1 and f 2 prior to the transmission [17].  Let Ik 
denote the indicator function for the presence of PBI at the 
upcoming frequency f k, Ik=1 if PBI is present at f k, and 
Ik=0 if PBI is absent at f 

k.  Since the time-variant nature of 
the interference induce uncertainty into the knowledge of 
the PBI, we introduce a reliability factor η to model the 
reliability of the knowledge of the PBI at the transmitter.  
The probability of the PBI at frequency f 

k is calculated as 
pk=ηIk+(1–η)(1–Ik), where η∈[0,1]. As η increases, the 
reliability improves. 

The receiver employs diversity combining techniques 
[15] to form the decision statistics.  When there is no PBI 
at both f 

1 and f 2, Maximal Ratio Combining (MRC) is 

used.  When one frequency has PBI, the receiver chooses 
the frequency that does not has PBI.  If both frequencies 
have PBI, we assume an error occurs. The proposed 
adaptive modulation method operates as follows. Let f 

1 
and f 2 be the two upcoming frequencies, and α̂1 and α̂2 be 
the predicted channel gains, respectively. The average 
BER when M(i)-QAM is employed by the transmitter is  

BERM(i)
*(Es,N0,α̂1,α̂2,p1,p2) = 

(1–p1)(1–p2)
1–p1p2

 ×  

⌡⌠
0

∞

⌡⌠
0

∞

BERM(i)(γ = 
Es(α1

2+α2
2)

N0
)p(α1|α̂1)p(α2|α̂2)dα1dα2 

+ 
p2(1–p1)
1–p1p2 ⌡⌠

0

∞

BERM(i)(γ = 
Esα1

2

N0
)p(α1|α̂1)dα1 

+ 
p1(1–p2)
1–p1p2 ⌡⌠

0

∞

BERM(i)(γ=
Esα2

2

N0
)p(α2|α̂2)dα2 + 0.5p1p2.    (5) 

The modulation level is chosen as  
M̃=max{M(i) | BERM(i)

*(Es,N0,α̂1,α̂2,p1,p2) ≤ BERtg} (6) 
In the LRP for channels with PBI, past observations at 

interference-free dwell intervals are used. The optimal 
MMSE LRP algorithm with recursive autocorrelation 
matrix update is utilized.  While PBI degrades the 
accuracy of the LRP, the quality of prediction is improved 
relative to interference-free system without diversity [8]. 

Next, we describe a sentient FH diversity technique 
that can further improve the performance of SFH systems.  
In this method, channel coefficients of L widely spaced 
frequencies are predicted, and a subset of r frequencies 
with the largest channel gains are selected in the 
transmission.  In the presence of PBI, the average BER for 
each modulation level is computed, and the largest signal 
constellation that satisfies the BER requirement is selected 
for the transmission. 

Simulations are used to demonstrate the performance 
of adaptive SFH with PBI for the Jakes model with the 
same parameters as in section 3.  In figure 4, we plot the 
BPS of adaptive modulation using diversity FH and 
sentient FH under the assumption of perfect knowledge of 
PBI at the transmitter. As expected, the performance 
degrades as δ increases.  We observe that the performance 
of sentient FH is better than that of diversity FH due to its 
larger channel gain. While performance of sentient FH 
improves with increasing L when L is moderate, as L 
becomes very large, the BER actually increases due to 
inaccurate frequency selection. Our investigation shows 
that L=4 has near-optimal performance [8].  We also plot 
the BPS of adaptive modulation for a non-diversity system 
with PBI.  In this case, adaptive modulation as in (4) is 
applied when the upcoming frequency is interference-free, 
and outage occurs if there is interference. Note that when 
this method is extended to η<1, the target BER cannot be 
satisfied, implying that diversity is required for channels 
with imperfect knowledge of PBI at the transmitter. Figure 
5 shows the BPS of adaptive diversity FH systems as a 



function of η.  We observe that the spectral efficiency 
degrades as η decreases.  For both diversity and sentient 
FH, when η≤0.95, the target BER cannot be satisfied with 
the uncoded adaptive transmission method proposed 
above, and coding methods that provide further diversity 
are required. However, this investigation is beyond the 
scope of this paper. 
 

5. CONCLUSION 
 

The optimal MMSE long range channel prediction 
algorithm for SFH communications with coherent 
detection was introduced, and was shown to enable 
adaptive modulation for SFH.  Joint adaptive diversity 
combining and adaptive modulation were investigated for 
SFH communications with PBI and shown to improve 
performance significantly relative to non-adaptive 
methods. 
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