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ABSTRACT
Algorithms that predict the wireless channel for up to a
few wavelengths cannot be adequately tested with
stationary models, such as the Jakes model.  Moreover,
ray-tracing or finite difference time domain (FDTD)
methods do not provide insights into the relationship
between the reflector configurations and the performance
of the long-range prediction.  A novel model is required
to: (1) create non-stationary datasets to test our previously
proposed adaptive long range prediction algorithm, which
enables practical realization of adaptive transmission
techniques, including modulation, adaptive coding, power
control, sentient transmitter diversity, etc.  (2) classify the
reflector geometries that will have the typical or the most
severe parameter variations, so that the reflector
configurations for test datasets can be appropriately
chosen, (3) provide limits on the speed of adaptation
needed for an algorithm to predict the channel
significantly into the future, and thereby reveal the timing
of future deep fades, etc. and (4) illuminate the origins of
the temporal and statistical properties of measured data.
We present a model that satisfies these criteria.  The
algorithm performs similarly on channels given by the
physical model or actual measured data, but differently
when the channel simulated by the Jakes model.  We verify
that the insights of the model accurately describe the
performance of the algorithm in several scattering
environments when prediction is employed with adaptive
power control and adaptive modulation.  Moreover, we
study limits of the long-range prediction at frequencies
other than the observed frequency, of importance in
correlated uplink and downlink transmission, orthogonal
frequency division multiplexing (OFDM) and frequency-
hopping systems.

1. INTRODUCTION
The tremendous growth in demand for wireless
communications capacity has created a need for new
modulation, coding and detection methods that more
efficiently use the multipath fading channels encountered
in mobile radio.  Since the channel changes rapidly, the

transmitter and receiver are not usually optimized for
current channel conditions, and thus fail to exploit the full
potential of the wireless channel. Recently, several new
adaptive transmission techniques [1,2], such as adaptive
modulation, adaptive channel coding, adaptive power
control, and adaptive transmitter antenna diversity, have
been investigated by many researchers.  By taking
advantage of the time-varying nature of the wireless
channels, these adaptive schemes try to use both power
and spectrum more efficiently to realize the higher bit rate
transmission without sacrificing the Bit Error Rate (BER)
performance.  To implement adaptive transmission
methods in practice, channel state information (CSI) for a
future block from tens to hundreds of data symbols must
be available at the transmitter due to the feedback delay
and other constraints [1].  At realistic mobile speeds, even
a small delay will cause a significant degradation of
performance, since channel variation for high Doppler
shifts usually results in a different received power at the
time of transmission than at the time of channel estimation.
Therefore, to realize the potential of adaptive transmission
methods, the channel variations have to be reliably
predicted at least several milliseconds ahead.  Recently, we
investigated a novel adaptive long-range fading channel
prediction algorithm and applied it in adaptive modulation
and transmitter diversity [1].  It was demonstrated that this
method can forecast the wireless channel well beyond the
coherence time, and provides enabling technology for
adaptive transmission. (Also, see [1] for references on
fading channel prediction.)

In this paper, we describe a novel deterministic fading
channel model, and verify that this model will generate
realistic fading datasets to test both our prediction
algorithm and its application in adaptive transmission
schemes.  We give examples to illustrate that the insights
obtained from the model result in creation of typical and
challenging environments for testing prediction
performance.



2

2. THE PHYSICAL MODEL
A well-known statistical model that characterizes a flat
fading channel is Rayleigh fading, in which the fading
coefficients are modeled as complex Gaussian random
variables [3, 4].  The deterministic Jakes model [3] is used
as a standard model in computer simulations.  However,
neither this model nor the depiction as a stationary
Rayleigh random process captures the variation of channel
parameters associated with each reflected wave
(amplitudes, frequencies and phases).  The performance of
the long-range prediction algorithm [1] depends on this
time variation [1, 5-9].  Thus, to test the long-range
prediction algorithm and its application in adaptive
transmission systems for realistic mobile radio channels,
non-stationary data sets are necessary.  Long-range
prediction is strongly dependent on the short-term fading,
so we cannot average it away as is usually done in long-
distance (log-normal) fading studies.  Further, we are not
concerned with modeling the long-distance fading, since it
does not qualitatively affect the local flat fading (we can
take into account local shadowing of sources, which is
important).  We are concerned with insights that
differentiate typical vs. challenging cases for the
prediction.  Our model provides these insights, as we
demonstrate below, which gives it an advantage over ray-
tracing or FDTD models that produce an accurate field
value, but little qualitative insights for model testing.

The physical model used is based upon the method of
images combined with diffraction theory.  An aperture in
the object plane defines the object and acts as a source of
diffraction.  Alternatively, the aperture can be used to
shadow a distant reflector, providing accurate local
diffraction when the object size would not affect the
illumination of the calculation region.  The placement of
the effective (image) source is determined by the object
curvature. [10]  Complex objects can be represented as
several flat or curved objects with adjacent apertures.  The
Fresnel diffraction formalism with point-illumination [11]
is used to calculate the field for each reflector in the region
of interest.  The interference pattern c (coherent sum of the
complex electric fields Ej of wavelength λ) generated by N
plane-wave reflectors with amplitude Aj, (Doppler)
frequency fj and phase ψ j, and time averaged over an
optical cycle, can be written as:

Pattern = c(t) = ∑
j=1

N
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j
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All variables refer to the j-th reflector.  The parameters and
position vectors rscatt j, reffscatt j, rptatj, x1j, x2j and rj = |rptat -
reffscatt|j are defined in Figure 1.  The reflector at (rscatt)j has
reflectivity ℜj, and incident power from the transmitter

(Ein)j.  The phase factor, e-2πi r~/λ+iφ, contains the propagation

term proportional to r~j and the phase from the reflection

process, φj.  The propagation term r~j is simply rj for a flat
reflector, but needs to be increased by |r t rans - r scatt|j �
(curvature radius)j for a curved reflector. The phase φ j

could be calculated with the Fresnel formulae, [11], but we
treat as a constant without qualitatively altering the result.

To create a dataset, the user of the model specifies the
location of the transmitter and the centers of the relevant
object surface and aperture (the same when shadowing is
not relevant) for each object.  The orientation of the
aperture, object reflectivity, object curvature, and
reflection phase shift are also specified for each object.
An aperture is specified for the transmitter so that non-
line-of-sight regions can be modeled.  Other inputs to the
modeling program include the carrier frequency and region
of interest (location, size and number of points for each of
the two dimensions).  The region of interest may be any
rectangular array of points from a square to a single line in
either direction.

x1

x2
xo

r trans r effscatt
r ptat

r scatt

aperture 

transmitter source effective source 

scattering object 
calculation point 

Figure 1. The parameters used to calculate the amplitude
from one reflecting object, shown as a dotted rectangle.
Also shown is the aperture chosen.  The origin is arbitrary
since only differences between the vectors are used.
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The physical model has the advantage of giving significant
insights for determination of typical and challenging-case
reflector geometry.  The insights derive from the simple
relation between the field contribution from each
component and the (effective) point source and aperture
response in the model.  This information is useful for
constructing test datasets for algorithms, because it allows
a sentient choice of object placement.

For example, the model dataset [5] in Figure 2 was used to
examine the effect of variation of the Doppler shifts fj and
other parameters in (1) on prediction performance.   The
Doppler shift varies with position, most rapidly as the
mobile passes the virtual image source and faster when the
virtual source is closer.  Route 2 in Fig. 2 passes close to
the curved objects, so those components of the interference
pattern will have relatively rapid Doppler frequency
variations (up to 890 Hz/second).  This variation causes
this route to be a challenging case as discussed below.  In
contrast, the rate of Doppler frequency variation along
route 1 is <200 Hz/second, which is more typical in
practice.  Path 3 is challenging since the amplitudes of the
reflections from the curved reflectors varies quickly (1/r)
in addition to the Doppler shifts changing.  Moreover, it
will be shown in Section 3 that for frequency selective
channels, variation of the path length differences (excess
delays) [4] for various reflected components affects
prediction accuracy.  Excess delays can also be extracted
from physical model scenarios to design typical and
difficult tracking conditions.  The model provides the
ability to vary the excess time delay profile along the path
of the mobile in a realistic manner.

3. LONG RANGE PREDICTION OF MODEL AND
MEASURED DATA

The ultimate purpose of the model is to provide a testbed
for our long-range prediction algorithm.  In Figure 3, we

show the importance of using a nonstationary channel
model for testing the prediction algorithm.  The complex
fading coefficients are predicted using the adaptive long-
range prediction method [1].  The prediction algorithm
uses an autoregressive (AR) model

c^ n = ∑
j=1

p
  dj cn-j , (2)

where c^ n is the predicted sample, and cn-j are the observed
samples of c(t) in (1).  When the channel is given by the
sum of several important reflectors, (1), the AR model
coefficients dj in (2) are related to the Doppler frequencies
associated with reflectors, whereas the amplitude and
phase of each reflector are accounted for through the use

radio
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Figure 2 Possible geometry for the physical channel
model calculation, with one large and five curved
reflecting objects.  The virtual source for the large
reflector is shown at the right.  Those for the curved
reflectors are inside the reflectors.  The path marked 1 is
typical, while those marked 2 and 3 are challenging.
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Figure 3.  Mean square error of the prediction for Jakes
model, physical data and measured data are given as a
function of prediction range in wavelengths. (p = 40, the
maximum Doppler shift fdm = 46 Hz, and the sampling
rate is 1562.5 Hz).
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of the prior data in the prediction [6,12].  The model
coefficients dj are tracked using the Least Mean Squares
(LMS) method.  Fig. 4 shows that the mean square error
(MSE) can be further improved if Recursive Least Squares
(RLS) tracking is utilized [10].  The mean square error vs.
prediction range is shown for the measured data, our
physical model, and the Jakes model.  The measured data
were collected by a van along a route in low density urban
Stockholm.  The Jakes, physical model and measured data
sets all have similarly shaped autocorrelation functions.
Also shown in Figure 3 are the simulation results of MSE
vs. prediction range for the Jakes model at a lower
sampling rate fs=521Hz for the cn in (2).  We found that the
prediction of the stationary Jakes model data set can be
improved by using a lower sampling rate.  The prediction
for the non-stationary measured and modeled data is not
improved, although it still benefits from a sampling rate
much lower than the data rate given a fixed model order
[1].  The significant degradation of the MSE for two
realistic data sets relative to the Jakes model at shorter
prediction lengths is due to the non-stationarity
encountered in mobile radio channels.  Prediction at the
longer ranges depends strongly on the number of important
reflectors (fixed in Jakes model, varies for the physical
model and measured data) and their variations.

We compared the BER performance of the truncated
channel inversion adaptive power control method (TCI)
[2] with long-range prediction between typical and
challenging cases in Figure 5.  Two thresholds, 0.4 and
0.1, are used for the TCI as described in [12].  The channel
sampling rate is 1000 Hz and the Maximum Doppler shift
67 Hz.  The data rate is 50 Kbps.  The simulation utilized
2-step (2 ms) ahead prediction.  Typical and challenging
datasets correspond to routes 1 and 2 in Figure 2,
respectively. The performance difference shows that our
physical model insights can help to create different mobile
radio environments that both test the limits of the

prediction method and validate its application in adaptive
power control.

We have investigated adaptive modulation enabled by
long-range prediction in [1,8,13].  The basic idea of
adaptive modulation [2] is to vary the power and
constellation size according to the instantaneous channel
condition, which can be measured as either the signal-to-
noise (SNR) ratio or the fading gain.  We set the target
BERtg = 10-3, and use fixed power variable rate square M-
quadrature amplitude modulation (MQAM) constellations
of sizes M = 0, 2, 4, 16, 64.  Threshold choice based on the
predicted channel coefficient and its accuracy was
discussed in [8].  In Figure 6, the bit rate of adaptive
modulation is compared for the Jakes model, physical
model and measured data.  Note that our physical model
accurately predicts the performance expected under actual
conditions, since the prediction performance with model
data is similar to that for measured data.  Comparison of
the three curves reveals that the non-stationarity limits
performance of adaptive modulation as the prediction
range increases.  We found that the bit rate loss is about
half a bit for non-stationary data relative to the stationary
case.  Although the non-stationarity results in reduction of
the bit rate relative to the ideal case when the long-range
prediction is employed, the bit rate is still significantly
larger than when outdated CSI is used to calculate the
threshold (over 1 bit/symbol) [8,14].

We extended the adaptive modulation study to systems
that use more than one carrier frequency in [13].  The aim
is to determine the practicality of observing the signal at
one frequency, and adapting signaling requirements at
another frequency.  In this paper, these frequencies are
separated by ∆f = 50kHz.  We generate challenging and
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typical case scenarios for this purpose.  In Figure 7,
reflectors are arranged to give an excess delay distribution
that is approximately exponential [3,13], characterized by
the rms delay spread [4].  The rms value is usually very
slowly varying (case 1), although near a shadowing
structure (left inset of Fig. 7), the delay spread can vary
rapidly (right inset), cases 2 and 3.  We investigate the
performance of adaptive modulation on these channels
during the T = 1s interval when the rms varies in cases 2
and 3 (from 3.5 to 4.5 s in the right inset).  The value of
the rms is not updated during this interval.  The target BER
= 10-3, and continuous power variable rate MQAM method
with the same modulation levels as above is used.   The
result shows the 2dB loss for the challenging case 3
relative to the rms-invariant case.  To improve
performance, the rms value needs to be tracked and
updated (the adaptation rate is denoted Rada).  For
challenging cases, an acceptable RadaT = 5 is required to
avoid performance loss.

CONCLUSIONS
We have presented an overview of a physical model that
generates realistic, non-stationary data for long-range
prediction testing, and provides expectations of the degree
of prediction difficulty for various environments.  It allows
calculation of the rates at which parameters associated
with the reflectors vary, and hence the adaptive tracking
speed required to accurately predict future channel
properties.  The channel prediction methods tested here
perform similarly with both the non-stationary channel
generated by the model and with measured channel data.

The application of the channel prediction method for
adaptive power control and adaptive modulation is
validated with our physical model for typical and
challenging propagation environments.
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