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Abstract--- Adaptive transmission techniques, such as
adaptive modulation and coding, adaptive power control,
adaptive transmitter diversity, etc., depend on the
transmitter's ability to predict future behavior of the channel.
Recently, we proposed a reliable long-range prediction
algorithm for rapidly time variant fading channels.  In this
paper, we analyze the statistical behavior of the errors
generated by this channel prediction method.  We show that
our prediction technique makes adaptive modulation feasible
for a standard stationary fading channel model (Jakes
model), a novel realistic physical channel model and
measured data.  In addition, we demonstrate that the non-
stationarity of the realistic mobile radio channel limits
performance of adaptive modulation as the prediction range
increases.

1. Introduction
New adaptive transmission techniques were proposed

recently to satisfy the tremendous growth in demand for
wireless communications capacity.  In these methods, the
transmitted signal varies according to the instantaneous fading
channel power.  As a result, much higher bit rates relative to
the conventional signaling can be achieved [1-6].  These
adaptive modulation methods depend on accurate channel state
information (CSI) that can be estimated at the receiver and sent
to the transmitter via a feedback channel.  This information
would allow the transmitter to choose the appropriate
transmitted signal.  The feedback delay and overhead,
processing delay and practical constraints on modulation
switching rates have to be taken into account in the
performance analysis of adaptive modulation methods.  For
very slowly fading channels (pedestrian or low vehicle speeds),
outdated CSI is sufficient for reliable adaptive system design.
However, for rapidly time variant fading that corresponds to
realistic mobile speeds, even small delay will cause significant
degradation of performance since channel variation due to large
Doppler shifts usually results in a different channel at the time
of transmission than at the time of channel estimation [1, 2].
To realize the potential of adaptive transmission methods, these
channel variations have to be reliably predicted at least several
milliseconds ahead.

To date, most research work on adaptive modulation falls
into three categories.  The first class includes investigation of
adaptive modulation methods under the assumption that the

transmitter knows the fading coefficients exactly [1, 3, 4].  In
general, this is not true due to the noise and the delay in the
feedback path.  The second approach is to design adaptive
signaling using delayed fading estimates [2].  In [2], the current
channel fading amplitude when conditioned on the delayed
fading estimates was characterized as a Rician random
variable, and the signaling design depends on the knowledge of
correlation coefficient between the current channel state
information (CSI) and the outdated fading estimates.  However,
in practice, the autocorrelation function is generally not known
at the transmitter, and also it was found that even very small
delay causes significant loss of bit rate using the design rule in
[2].  The third class includes adaptive modulation design aided
by the predicted CSI [5, 6].  However, either only short-range
prediction or a slowly fading channel was addressed in these
investigations.

Recently, we have investigated a novel adaptive long-
range fading channel prediction algorithm in [7 � 9, 11 - 16].
This algorithm characterizes the fading channel using an
autoregressive (AR) model and computes the Minimum Mean
Squared Error (MMSE) estimate of a future fading coefficient
sample based on a number of past observations.  The superior
performance of this algorithm relative to conventional methods
is due to its low sampling rate (on the order of twice the
maximum Doppler shift and much lower than the data rate) [8,
9].  Given a fixed model order, the lower sampling rate results
in longer memory span, permitting prediction further into the
future.  The prediction method is enhanced by an adaptive
tracking method [8, 9] that increases accuracy, reduces the
effect of noise and maintains the robustness of long-range
prediction as the physical channel parameters vary.  In addition
to testing our method on standard stationary fading models [7-
9], we utilize a method of images to create a novel physical
channel model where fading is viewed as a deterministic
process formed by the addition of several scattered components
[11, 12].  The amplitude, frequency and phase of each
component slowly vary as the vehicle moves through an
interference pattern.  The variation of these parameters is not
captured by the standard Jakes model [10] or a stationary
random process description [17].  However, the accuracy of the
channel prediction is determined by the rate of change of these
parameters.  The novel physical model allows us to test the
proposed channel prediction algorithm and identify typical and
challenging situations encountered in practice.  We also use
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field measurements provided by Ericsson, Inc. to validate the
performance of our prediction method and the insights of the
novel physical model [11 � 13, 16].

In this paper, we concentrate on the study of adaptive
modulation in conjunction with the proposed long-range
prediction algorithm for realistic mobile radio channels.  After
a brief description of our long-range prediction algorithm, we
develop a statistical model of the CSI error for the MMSE
prediction.  This model can aid the appropriate modulation
level selection.  Moreover, the impact of the prediction
accuracy on the switching thresholds of an adaptive modulation
method can be easily understood from this error model.  We
examine the bit error rate (BER) gains of adaptive modulation
aided by long range prediction, and demonstrate that accurate
prediction is required to approach the ideal bit rate.  Finally, we
compare the BER performance of an adaptive modulation
system aided by predicted CSI for the Jakes model, the actual
field measured data and a novel non-stationary physical fading
model.  The effect of the non-stationarity on the prediction
accuracy and the performance of adaptive modulation is
examined.

2 .  Adaptive Modulation Using Long Range
Channel Prediction
The basic idea of adaptive modulation methods

investigated in e.g. [1, 2, 5] is to vary the constellation size
according to the instantaneous channel condition which can be
measured as either the signal-to-noise (SNR) ratio or the fading
gain.  The modulation level selection is generally subject to the
average power constraint for the given target BER performance
requirement.  The number of modulation levels, or the bit rate,
is larger when the channel is stronger, whereas during deep
fades transmission is avoided completely.  Thus, the time-
variant nature of the channel is exploited, resulting in much
faster bit rates relative to non-adaptive techniques. In this
paper, we only consider the fixed power and modulation level-
controlled scheme using Square MQAM signal constellation
for the target BERtg = 10-3.  We restrict ourselves to MQAM
constellations of sizes M = 0, 2, 4, 16, 64.  In the development
of adaptive modulation systems, three key components need to
be considered: (1) prediction of channel conditions; (2)
statistical model of the prediction error; (3) design rule for the
modulation level selection.  We first discuss (1) ~ (3) for
adaptive modulation aided by long range prediction and then
present the BER performance results.
(1) Long Range Prediction Algorithm for Fast Fading

Channels
The objective of long-range prediction is to forecast future

values of the fading coefficient far ahead.  To accomplish this
task, we use the linear prediction (LP) method based on the AR
modeling [7, 8].  Suppose a sequence of p previous samples of
the fading signal is observed, where the sampling rate fs is
much lower than the symbol rate (on the order of the Nyquist
rate given by twice the maximum Doppler shift).  The linear
MMSE prediction of the future channel sample c^ n based on p
previous samples cn-1...cn-p is given by:

  c^ n = ∑
j=1

p
 djcn-j (1)

where the coefficients dj are determined by the orthogonality
principle.  The lower sampling rate allows to predict further
ahead for the same model order p [9].  The Least Mean Squares
(LMS) adaptive tracking method was further implemented to
track channel parameter variation [8, 11, 13] and also to reduce
the effect of noise [9, 14].  Equation (1) results in the prediction
one step Ts ahead (e.g. if fs=1KHz, the prediction range Ts i s
1ms).  To achieve longer-range prediction (several steps ahead)
for the same sampling rate, we iterate (1) using previously
predicted fading samples instead of the observations.
(2) Statistical Model of the Prediction Error

In this analysis, we assume that channel samples cn are
modeled as zero-mean complex Gaussian random variables,
i.e., the channel is Rayleigh fading.  From the linear prediction
algorithm (1), the estimate c^ n is a linear combination of cn-j, so
it is also a zero-mean complex Gaussian random variable.
Thus, the amplitude α = |cn| and its predicted value α^  = |c^ n|
have a bivariate Rayleigh distribution with the joint probability
density function (pdf) [19]:

f(α,α^ ) = 
4αα^

(1-ρ)ΩΩ^
 I0(

2 ραα^  

(1-ρ) ΩΩ^
 ) exp(-

1
1-ρ (

α2

Ω   + 
α^ 2

Ω^
 )) (2)

where the correlation coefficient ρ = 
Cov(α2,α^ 2)

Var(α2)Var(α^ 2)
 , 0 < ρ <

1, Ω=E{α2 }, Ω^  = E{α^ 2 },  and I0 is the 0th-order modified
Bessel function.  We define the prediction error β as the ratio
of the actual fading gain α and the predicted fading gain α^ , i.e.,

β = 
α
α^  .  From ([20], p. 138), the pdf of β can be calculated

based on the equation:

pβ(x) = ⌡⌠

0

+∞

α^ f(xα^ , α^ ) dα^ (3)

Where f(·, ·) is the joint pdf of α and α^  as in (2).  From [18]:

I0(x) = 
1
π ⌡⌠

0

π

e-xcosθdθ (4)

Substituting (4) into (2) and integrating by parts in (3), we
obtain:

pβ(x) = 
2x(

1
λx2 + λ)(1-ρ)

((
1
λx2+λ)2-4ρx2)1.5

 (5)

where λ = Ω/Ω^ .  We plotted both the theoretical pdf curve
(3) and the measured pdf of the prediction error β (through
simulation) in Figure 1.  Parameters ρ = 0.9965 and λ = 1.0204
were estimated through simulation and substituted into (2) to
obtain the theoretical pdf.
(3) Design Rule for the Modulation Level Selection

Given fixed transmitter power Es(or the average SNR level
γ− ( = Es/N0), to maintain a target BER, we need to adjust the
modulation size M according to the instantaneous channel gain
α(t).  In other words, the adaptive modulation scheme can be
specified by the threshold values αi, i = 1, �, 4, defined as:
when α(t) ≥ αi, Mi-QAM is employed, where M1 = 2, Mi =
22(i-1), i > 1.  When perfect CSI α(t) is available, these
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thresholds can be directly calculated from the BER bound of
MQAM for an AWGN channel [1]:

BERM ≤ 0.2 exp(-1.5γ(t)/(M-1)) for M>2, and

BER2 = Q( 2γ ) , (6)
where γ(t)= α 2(t)γ− is the instantaneous received SNR.
However, when the predicted CSI α^ (t) is used, the current
channel condition is characterized by the distribution of p(α|α^ )
which can be calculated as:

pα|α̂(x) = 
1
α^ pβ(

x
α^ ) (7)

Then, the BER bound for predicted CSI α^ , say BER*M, can be
obtained by evaluating the expectation of BERM over β using
pβ(x) in (2) as:

BER*M = ⌡⌠

0

∞

BERM(γ-x2)pα|α̂(x)dx (8)

= ⌡⌠

0

∞

BERM(γ-x2α^ 2)pβ(x)dx (9)

This indicates that we need to use BER*M rather than BERM to
calculate thresholds when only the predicted CSI is available2.
(In a related technique in [2], noiseless delayed CSI is assumed
available at the transmitter, and the BER*M is calculated based
on a conditional Rician distribution of the current channel
amplitude.)

For flat Rayleigh fading channels, the probability density
function of the amplitude α(t) (for perfect CSI) is given by:

pα(x) = 
2x
Ω  exp(-

x2

Ω ), (10)

where Ω is the average power of the channel.  From [4, 5], the
average number of bits per symbol for adaptive modulation
with perfect CSI can be expressed as:

Rada= ∑
i=1

4
 log2Mi

⌡⌠

αi

αi+1

pα(x)dx , (11)

                                                  
2 Here, we didn't address the threshold optimization.  For the method of
threshold selection to maximize the average bit rate, refer to [21, 22].

where αi are the threshold values and α5 = ∞.  Similarly, when
the thresholds α^ i calculated based on BER*

M are used, Rada can
be computed as:

R
^

ada= ∑
i=1

4
 log2Mi

⌡⌠

α^ i

α^ i+1

pα̂(x)dx , (12)

where the pdf of predicted amplitude α^ (t) is given by:

pα̂(x) = 
2x

Ω^
 exp(-

x2

Ω^
 ). (13)

The results of this section will be used in the rest of the paper
to evaluate performance of adaptive modulation when
prediction is used.

3.  Performance of Adaptive Modulation Aided
by Channel Prediction for Realistic Mobile
Radio Channels
Jakes model [10] is often used as a standard simulation

model for the Rayleigh fading channel.  However, the variation
of channel parameters associated with the scatterers
(amplitudes, frequencies and phases) is not captured by this
stationary model or by the stationary Rayleigh random process
characterization.  We addressed realistic physical modeling for
flat fading channels in [11, 12] and created non-stationary
models to test our adaptive prediction algorithm.  By
comparing the shape of the autocorrelation function, the pdf of
the amplitude and the fading envelope for this physical model
and the actual measured data, we found that our physical model
closely matches the actual fading channel.  Thus, this physical
modeling provides a realistic non-stationary fading model to
validate our proposed prediction algorithm and its application
to adaptive modulation systems for both typical and
challenging cases of channel parameter variation.  The actual
field measurements were provided by Ericsson, Inc. and were
collected in low density urban Stockholm.  This dataset
contains 100,000 samples of the flat fading signal sampled at
the rate of 1562.5Hz.  Different portions of the data set have
different shapes of the empirical autocorrelation function.  This
indicates that the data was clearly non-stationary with
differences in the number and location of the scatterers along
the measurement track.  By adjusting the types and positions of
the scatterers in our physical model, we were able to match the
autocorrelation functions of different data set segments to those
produced by the model [12, 15].  These experiments provided
us with insights into the nature of flat fading and the impact on
the prediction accuracy.

In this paper, we use the Jakes model, the actual measured
data and the physical model to validate the adaptive modulation
scheme aided by channel prediction.  Also, we will show the
impact of non-stationarity on the performance of adaptive
modulation.  For the segment of the actual measured data set
used in this paper, the distribution of the amplitude and the
empirical autocorrelation function were close to those for the
theoretical isotropic Rayleigh fading channel [12, 15].  Physical
model data to match this segment was generated by placing
several curved randomly distributed scatterers along two sides
of the track of the mobile so that the image-sources subtended a
large angle from the mobile.  In addition, the Jakes model with
9 oscillators was used as the stationary model in the following
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Figure 1.  Statistical model of prediction error.
(9-oscillator Jakes Model, fdm = 100 Hz, p = 50, 1-step (2ms)
ahead prediction, noiseless observations.)
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performance comparison.  The Maximum Doppler shift of 46
Hz was used in both the physical model and the Jakes model.
The fading signal was sampled at the rate of 1562.5 Hz.  In
linear prediction, the model order p = 40 and the observation
interval = 100 samples.  Finally, the symbol rate was 39
ksymbols/s, and the modulation switching rate was set to the
symbol rate.  Interpolation and adaptive multi-step prediction
were utilized to predict the channel coefficients at the symbol
rate as described in [7, 11].

In the following presentation of performance of the
adaptive modulation aided by channel prediction, we
considered both 3-step (1.92ms ahead) and 5-step (3.2ms
ahead) prediction.  Here, we employed a pre-training method to
obtain accurate initial LP coefficients dj in (1) [14], and used
post-tracking method to track the variation of channel
parameters.  For the 3-step prediction, the parameters ρ =
0.9990 and λ  = 1.0003 in (5) were estimated through
simulation for the Jakes model.  For the measured data, ρ =
0.9921 and λ = 0.9985, and for the physical model, ρ = 0.9951
and λ = 0.9805.  These parameters were substituted into (5) to
obtain the theoretical pdf curves shown in Figure 2.  We
observe that our physical model has almost the same statistical
behavior of the prediction error as the actual measured data.

The BER bounds (6, 8) for both perfect and predicted CSI
(here we only considered the case of actual measured data since
its correlation ρ is the smallest) are shown in Figure 3.  We can
see that there is small difference between the thresholds
calculated using perfect CSI (solid line) and predicted CSI
(dotted line).  Next, we compare the BER performance of
adaptive modulation for the three datasets with and without
channel prediction.  Here, we use predicted CSI α^  to select the
modulation level, while the thresholds are calculated based on
the perfect CSI assumption.  We set target BERtg = 10-3.  The
results are shown in Figure 4.  Note that for all datasets our
long range prediction algorithm provides accurate enough CSI
to maintain the target BER using the thresholds which are
calculated based on the perfect CSI.  However, when delayed
CSI is used, and the thresholds are still calculated based on the
perfect CSI (this procedure is called 'static design' in [2]), the
BER performance significantly departs from the target BER
even for modest delays.  To alleviate this problem, Goeckel

studied a novel approach (called 'strongly robust signaling
design') to calculate thresholds based on the delayed CSI in [2].
From the results in [2], we found that even very small delay
will cause great loss of bit rate for fast vehicle speeds when the
strongly robust signaling design rule is used without long range
prediction.  E.g., 1.92ms delay for fdm=46Hz corresponds to ρ =
0.92 in [2] which causes at least 1bit/symbol data rate loss
relative to the ideal case.  As shown in Fig.4, under the same
conditions, the long-range prediction preserves the ideal bit rate
while maintaining the target BER.  Thus, accurate long-range
prediction is required to achieve the bit rate gain of adaptive
MQAM for rapid vehicle speeds and realistic delays.

Comparison of the Jakes model to the physical model and
the measured data reveals that the non-stationarity limits
performance of adaptive modulation as the prediction range
increases.  For example, consider 5-step (3.2ms) prediction in
Figures 5 ~ 8.  The parameters ρ = 0.9948 and λ = 1.0013 for
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Figure 2. Statistical model of prediction error. (1.92ms
ahead prediction, fdm = 46Hz, p=40, noiseless observations)
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the Jakes model, ρ = 0.9442 and λ = 0.9999 for the measured
data, and ρ = 0.9751 and λ = 1.0055 for the physical model
data were estimated through simulations.  The theoretical pdf
curves of prediction errors (5) for these three datasets are
plotted in Figure 5.  The statistical behavior of prediction errors
as the prediction range increases can be observed by comparing
Figures 2 and 5.  The BER bounds BER*

M for the Jakes model
and the measured data are plotted in Figure 6.  We found that,
for the stationary Jakes model, even for the 5-step (3.2ms)
ahead prediction, the difference between the thresholds
calculated based on the perfect and predicted CSI is still small.
(This difference remain very small for delays of up to 10 ms, or
up to λ/2, where λ is the wavelength.)  However, for the non-
s t a t i o n a r y  measured data, the differences become
nonnegligible.  The need to use modified thresholds for non-
stationary data when the delay is significant is illustrated in
Fig.7.  In this figure, the thresholds calculated based on the
perfect CSI were used in the simulation.  We observe that for
the Jakes model, the target BER is still maintained even for 5-
step prediction, while for the physical model data and for the
measured data, there is some departure from the target BER.
Thus, to satisfy the target BER requirement (say, 10-3 in this
paper), we need recalculate the thresholds for realistic fading
channels.  This modifications degrades the bit rate performance
as illustrated in Figure 8.  In this figure, we calculated the
thresholds based on BER*

M for the Jakes model, physical model
data and measured data, and plotted the average bit rate per
symbol as in equation (12).  We found that the bit rate loss is
about half a bit for non-stationary data relative to the stationary
case.  (Although the non-stationarity results in reduction of the
bit rate relative to the ideal case when the long range prediction
is employed, the bit rate is still significantly larger than when
outdated CSI is used to calculate the threshold [2].  For
example, the same delay of 3.2ms for fdm=46Hz corresponds to
correlation coefficient ρ = 0.8 in [2].  This results in the bit rate
of about 0.8 bits/symbol for the target BER = 10-3 and the SNR
per symbol = 15dB assuming stationary Rayleigh fading
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model, while the long range prediction allows to achieve the bit
rate of about 1.8 bits/symbol for non-stationary measured data,
and the near-ideal rate for the stationary model).  The
limitations of the linear long range prediction method due to
parameter variation in realistic fading environments indicate
that other techniques need to be explored to increase prediction
range further (e.g. see references in [12, 15]).

Another practical consideration in adaptive modulation
systems is the rate of change of the constellation size at
transmitter.  The design rule is determined by the rapidity of
channel variations and hardware limitations [1].  The derivation
in [1] shows that for the maximum Doppler shift of 100 Hz,
and a symbol rate of a 100 ksymbols/s, the signal constellation
remains constant on the average over tens to hundreds of
symbols (0.1ms to 1ms).  In practice, it might be desirable to
choose a constant modulation level for a fixed frame of certain
duration.  We found that it is not sufficient to predict the CSI at
the beginning of the frame, so we use the long range prediction
to forecast the fading power during the upcoming interval of
fixed length, and choose the modulation level by averaging this
predicted CSI.  In Figure 9, we examined the BER performance
of adaptive modulation aided by long range prediction for
different modulation switching rates (different frame duration).
Observe that modulation size can be held constant for long
intervals (up to 2ms) without significant average BER
degradation.  This result indicates that practical implementation
of adaptive modulation is possible for realistic mobile radio
systems.

4. Conclusions And Future Work
We analyzed the statistical behavior of the errors generated

by our previously proposed long range prediction algorithm,
and evaluated performance of adaptive modulation for flat
Rayleigh fading channels aided by predicted channel state
information.  Both theoretical and simulation results show that
accurate prediction of the fading channel far ahead makes
adaptive transmission feasible for rapidly time-varying mobile
radio channels.  We also showed that the non-stationarity limits
the performance of adaptive modulation aided by long-range
prediction as the prediction range increases.  Current and future
work focuses on power adaptation, combined transmitter
diversity and adaptive modulation, adaptive coded modulation
and adaptive channel coding aided by the proposed prediction
algorithm
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Figure 9.  BER performance of adaptive modulation with
different modulation switching rates.  (Jakes model, fdm = 100Hz)


