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Near-field scanning optical microscopy (NSOM) uses shear-force feedback as the primary

method to control the probe-sample distance.  We describe the nonlinear interaction between the

tip and sample with a simple truncated driven harmonic oscillator model.  The model accurately

describes the measured dynamics of this system. Insights are gained into the mechanism behind

this interaction, and we give strong evidence that the probe taps on sample surface adlayers in

normal operation, but will tap the underlying sample surface when the oscillation is nearly

quenched.
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Distance regulation in near-field optical microscopy (NSOM) makes use of the force

interaction between the probe and sample.  There are several experiments  in which accurate

distance control is essential: fluorescence lifetime [1], gradient field Raman [2], and

electromigration [3,4]. Understanding the dynamics of the probe interaction and the mechanism

behind the distance control helps to optimize distance regulation and evaluate its accuracy.  We

find that a nonlinear interaction such as a tapping force is required to accurately describe the

resonance behavior of the probe both in and out of feedback (near and far from the sample).

Furthermore, our novel study of the system dynamics shows that the model is able to predict the

detailed nature of the time response of the probe that we observe in our measurements.  Finally,

we present strong evidence indicating that the probe is tapping on surface adlayers prior to

tapping on the surface itself as the probe approaches the sample, and we comment on the

suitability of shear-force feedback for accurate distance control.

Shear force feedback using a tuning fork oscillator [5] is one of the most widely used

techniques for controlling tip sample separation with an NSOM.  It relies on voltage generation

by a crystal tuning fork to measure the oscillation amplitude that varies with tip sample distance.

The oscillation amplitude decreases when the probe is close to the surface due to an increase in

damping and a shift in the resonance frequency.  A variety of mechanisms and combinations of

mechanisms are proposed to be responsible for the interaction between the probe and the sample

such as friction [6], tapping (or knocking) [7-9], distance dependent probe bending [10],

damping layer [10-14], and coulomb fields [15].  In this paper we show evidence of a nonlinear

tip-sample interaction.  Of these mechanisms, only tapping and probe bending have a nonlinear

response.  Figure 1 (a) shows the resonance curve far from the surface and its evolution as the



3

probe is moved closer and closer to the surface.  The resonance frequency shift we see implies

that a nonlinear mechanism is active.  The obvious nonlinear interaction is tapping.

To model this tapping interaction, we use a simple truncated driven harmonic oscillator

used by others to model NSOM [7] and atomic force microscope [16] probe-sample interactions.

In this model the tapping force is included in the addition of a strong force when the lateral

position of the tip exceeds a critical value, xc.  The equation that describes such a system with

effective mass meff driven by a force Fdrive is

Fdrive/meff = F0cos(ωdt)/meff = ẍ + 2β0x�  + ω0
2 x + H(x-xc)[ ω1

2 (x-xc) + 2β1x� ] , (1)

where ωd is the radial tip oscillation driving frequency, β0 and β1 refer to damping and ω0 and ω1

the resonance frequencies of the fork/fiber oscillator and fiber/adlayer system, respectively, and

H is the step function.   We find ω0 and β0 from the free resonance curve.  These parameters

depend only on the tuning fork/probe assembly. From a combination of the free resonance curve

(H=0) and a shifted, damped resonance curve we determine ω1 and β1.  We comment in more

detail on the significance of the values of these two parameters for the physics of the tip-sample

interaction later in the paper. The parameter F0/meff is used to normalize the equations so that the

amplitude of x is 1 with no tapping (H=0). Numerical solutions to the model for various values

of xc give resonance curves as a function of the fraction of the undamped resonance peak

(setpoint) that are consistent with the resonance curves we find in our experiments (see figure 1).

Note that in both the numerical analysis and in the experiment, the damped resonance curve

crosses over the free resonance curve on the high frequency side resulting in driving frequencies

unavailable for normal feedback operation without switching the polarity of the feedback

response.
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We study the dynamics of the probe sample interaction by observing the calculated

oscillation x(t) as we add or remove the step function terms from the model.  When we add the

step function, we refer to the system as tapping on, and when we remove the step function, we

refer to the system as tapping off. This is analogous to the probe being moved from a position

out of feedback to a position close to the sample for the tapping on and vice versa for the tapping

off.  Figure 2 (a) shows the time response of the model overlaid with the resonance curve.  The

time response becomes faster as we move off resonance in either direction, and the time response

for turning the tapping off approaches the time response for turning the tapping on.  At the

resonance frequency, the time response for the tapping on vs. off is very different.

The dynamic behavior of the probe predicted by the model is consistent with what we

would expect qualitatively.  Recall that there are two parameters responsible for the time

response of the system when it is in feedback � the change in damping and the frequency shift �

both can be seen in figure 1. The time response is limited by the width of the resonance curve, in

the sense that if the tip gets too far from the sample, the decay time for the oscillation scales

inversely with the peak bandwidth.  Thus the time response is slow due to the high quality factor

(100 to 700) combined with the relatively low resonant frequency (32-40kHz).  When the probe

is close to the sample, the oscillation decreases due to both the damping of the probe and the

frequency shift, and while the damping is slow, the peak shift is fast.  Near resonance, at probe

positions relatively far from the sample, the slow damping is dominant; at probe positions close

to the sample the fast peak shift is dominant.  This inequity results in the two different curves for

the cases of tapping on and tapping off.  When the probe is off resonance, the peak shift is

dominant, and the time response is faster for both cases.
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In our experiments we clearly see the dynamic behavior predicted by the tapping model.

Without lateral scanning, we apply a 30 nm trapezoidal shaped pulse with an 8 msec rise and fall

time to the z-piezo, which ramps the tip alternately towards and away from the surface.  The

probe begins in feedback, so when it moves towards the surface, the tapping is increased

(tapping on), and when it is pulled away from the surface, the tapping is decreased (tapping off).

We maximize the gain until there is no overshoot when the probe retracts as a reaction to being

pushed towards the surface.  We plot the time response for the inward motion of the probe as a

reaction to being pulled away from the surface as a function of driving frequency, and we see a

behavior that is very similar to that predicted by the model, figure 2b.

In a 2nd experiment to study the time response of the system, we apply a square wave to

the z-piezo that moves the tip 40 nm alternately towards and away from the surface, while

monitoring the system response.  The feedback gain is the same for all frequencies.  We expect

the time for the system to respond when the pulse pushes the probe towards surface to be fast in

all cases, pulling the probe away from the surface, due to the increased tapping.  Since the gain is

high, overshoot is observed when the �ingoing� response is too slow.  This will be the case

without strong nonlinear effects (at frequencies near the resonance peak).  Figure 3 shows

exactly this behavior.  The curves shown are the in and out motion of the probe with the

resonance curve overlaid for reference.  As the pulse pulls the probe away from the surface, the

time response for the inward motion, inversely proportional to the slope, decreases as we

increase the driving frequency above the resonance peak until the time response for the in and

out motion of the probe align. This balanced response quenches the overshoot. If this frequency

rather than the peak frequency were used for feedback, the bandwidth of the NSOM could be
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increased [17].  Further increases in frequency much beyond this point result in instability since

the damped resonance curve begins to cross over the free resonance curve.

With confidence in a model that accurately describes both the static and dynamic aspects

of our system, we look more closely at the choice for ω1 and β1. Gregor uses the clamped

resonance curve (xc = 0) to determine these values, and they accurately describe the large

frequency shifts and minimal additional damping of his resonance curves as the probe

approaches the sample.  Figure 4 shows several of our resonance curves including the clamped

curve.  The trends are qualitatively different from Gregor's observation.  We find that using the

clamped curve to determine ω1 provides values that give a poor fit to our data because the spring

constant is too large.  The frequency shift for the clamped peak is 400 Hz as compared to 60 Hz

for the damped peak we use.  A simple picture describes both our and Gregor's observations: for

most of the approach curve, we are tapping on (soft) adlayers compared to Gregor who is tapping

on the sample surface or hard, frozen (low temperature NSOM) layers.  Therefore, we must

obtain the parameters for our model from the adsorbed layer tapping, not surface tapping if we

are to describe the dynamics under normal ambient operation.  We note that rather than tapping

on the surface adlayers, the probe may be opening a cavitation hole within the adlayers, resulting

in a tapping on the sidewalls of this cavitation hole.  Near a hydrophilic surface, water is

structured [18] as are other near-surface solvents [19], so they are less mobile, indicating that

cavitation is likely with the ultrasonic tip oscillation frequency.  Cavitation is also possible with

less mobile adsorbates and the less structured water (clathrates) near a hydrophobic surface [20].

Either case, tapping on the adlayers or cavitating in them, is consistent with our observation of

the change in stiffness that we observe when the probe reaches the sample surface.
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If the probe is tapping on the sample surface, then the distance to the sample depends

both on the fiber oscillation amplitude and the angle between the sample and the probe [9].

However, if the probe is tapping on surface adlayers, and the oscillation amplitude of the probe is

much less than the thickness of the adlayer, then the distance to the sample depends primarily on

the thickness of the adlayer and can be accurately controlled, as is the case with our system. In

our studies, the tip does not tap on the hard sample surface (beneath the adlayers) in the normal

operating range, or even closer to the surface, until the probe oscillation amplitude has decreased

due to sample interaction to a few percent of the free oscillation value.  This is clear from the

small measured oscillation amplitude at the feedback frequency (~1 nm) [17] compared to the 5-

10 nm approach curve � the tip simply cannot reach the surface.  As an additional evidence, in

our electromigration studies [3,4] we have found that we cannot measure tunnel current between

the tip and sample unless we set the feedback level much below the normal operating range

(probe very close to the surface).  The process is repeatable, with minimal tip wear determined

by little change in resolution even after several hours at a low feedback level (tunneling).  In the

case of small probe oscillation amplitudes on surfaces with a contamination layer (typical case),

shear-force is an accurate measure of probe-sample separation.

In conclusion, the nonlinear model accurately describes both the system dynamics and

the resonance curve behavior as the probe approaches the sample.   During this approach the

probe taps on surface adsorbed layers prior to tapping on the surface itself.  This implies that the

lateral force feedback is a good indicator of tip-sample distance when small oscillation

amplitudes are used, and that a tapping mechanism describes the nonlinearity of the tip-sample

interaction. This nonlinear interaction can be used to increase the bandwidth of the high Q

tuning-fork-based distance regulation system.
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Figure 1: a) Typical resonance curves obtained with the tuning fork method of oscillation amplitude measurement

at various tip-sample separations (solid lines).  b) Resonance curves with different degrees of tapping obtained by a

numerical solution of the nonlinear differential equation (dashed lines).

Figure 2:  a) The numerical calculation of the time response for the feedback signal to drop to 1/e for a variety of

driving frequencies for two situations: turning the tapping off and turning the tapping on.  This time response is

overlaid with the resonance curve for reference.  b) The experimental time response for the probe to find the surface

with optimized gain given an 8msec-ramped trapezoidal step of height 30 nm.

Figure 3: The feedback response to an impulse of 40 nm on the z-piezo for a variety of driving frequencies on either

side of the resonant frequency with constant gain.   The black lines are the outward motion. The grey lines are the

inward motion.  The resonance curve is overlaid for reference.

Figure 4: Experimental resonance curves showing the undamped resonance, a resonance at 35% of the free

resonance and a clamped resonance curve.  The peak of the clamped resonance is only 2% of the undamped

resonance peak, and the frequency shift is ~400Hz.
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Figure 1 (C. L. Jahncke, S. H. Huerth, Beverly Clark III and H. D. Hallen)
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Figure 2a and b(C. L. Jahncke, S. H. Huerth, Beverly Clark III and H. D. Hallen)
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Figure 3 (C. L. Jahncke, S. H. Huerth, Beverly Clark III and H. D. Hallen)
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Figure 4 (C. L. Jahncke, S. H. Huerth, Beverly Clark III and H. D. Hallen)


